【LeetCode 算法专题突破】二叉树的深度优先遍历(⭐)

简介: 【LeetCode 算法专题突破】二叉树的深度优先遍历(⭐)

前言

接下来我要开始攻克二叉树这一个大难题了,我打算把二叉树分成四个部分进行总结:

  1. 二叉树的深度优先遍历
  2. 二叉树的广度优先遍历(也叫层序遍历)
  3. 二叉树的基本属性求解
  4. 二叉树其他相关问题(删改、求公共祖先、二叉搜索树等等)

那我也不废话了,直接开始。

1. 二叉树的前序遍历

接下来,我们就将二叉树的前中后序的递归遍历都做一遍,然后再分别将这四种遍历的迭代实现方法也做一遍,基础不牢,地动山摇,我们慢慢来,一步一个脚印学好二叉树!

题目链接:144. 二叉树的前序遍历

题目描述

所谓的前中后序遍历,在前中后的是什么?其实就是根节点,所以我一般习惯用一个口诀来记住前中后序的遍历顺序:

  1. 前序就是:根左右
  2. 中序就是:左根右
  3. 后序就是:左右根

这其实就是按照根在遍历中的顺序划分的遍历方式。来看代码:

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (res []int) {
    var preorder func(node *TreeNode)
    preorder = func(node *TreeNode) {
        if node == nil {
            return
        }
        res = append(res, node.Val) // 根
        preorder(node.Left)  // 左
        preorder(node.Right) // 右
    }
    preorder(root) // 调用前序遍历
    return res
}

我们来看这个代码,其实这就是一个简单的递归遍历的函数,所谓的 “根左右” 其实就是先把 “根” 位置的值给塞进 res 数组而已。

2. 二叉树的中序遍历

那就继续中序遍历

题目链接:94. 二叉树的中序遍历

题目描述

其实刚刚已经介绍过前中后序是怎么样的了,所以我们直接看代码:

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) (res []int) {
    var inorder func(node *TreeNode)
    inorder = func(node *TreeNode) {
        if node == nil {
            return 
        }
        inorder(node.Left)
        res = append(res, node.Val)
        inorder(node.Right)
    }
    inorder(root)
    return res
}

这里我注释也懒得打了,可以发现他其实比起前序遍历就只是改了一个地方的代码,就是把 根 的位置和向左递归的位置换了一下,这就是中序遍历的遍历方法。

3. 二叉树的后序遍历

一做肯定是得做全套滴

题目链接:145. 二叉树的后序遍历

题目描述

其实现在题目描述也没有什么意义了,知道是后序遍历,我们直接写代码就完了:

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func postorderTraversal(root *TreeNode) (res []int) {
    var postorder func(node *TreeNode) 
    postorder = func(node *TreeNode) {
        if node == nil {
            return 
        }
        postorder(node.Left)
        postorder(node.Right)
        res = append(res, node.Val)
    } 
    postorder(root)
    return res
}

没有意外,也是朴实无华的改个代码的位置。

现在开胃小菜算是做完了,像前中后这样的遍历其实并没有什么难度,所以我们还需要挑战一下前中后序的非递归遍历,不然不能算是真正学会了这三种遍历的方式。既是锻炼我们的代码能力,也是让我们熟悉二叉树的基本遍历方式,打牢基础,后面才不会越看越懵逼。

4. 前序遍历的非递归实现

这里我就不把题目描述给放出来了,这里我们用的就是第一题

代码与思路

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
    if root == nil {
        return
    }
    st := list.New()
    st.PushBack(root)
    for st.Len() > 0 {
        node := st.Remove(st.Back()).(*TreeNode)
        ans = append(ans, node.Val)
        if node.Right != nil {
            st.PushBack(node.Right)
        }
        if node.Left != nil {
            st.PushBack(node.Left)
        }
    }
    return ans
}

我来讲讲使用迭代法求解的一个流程,采取的是用一个栈来模拟递归的方法(这里我采用的是 go 语言的 list 来模拟栈操作),模拟前序遍历 “根左右” 的遍历方式

  1. 首先将根(或者说当前走到的节点)的值存入数组
  2. 然后分别将右节点和左节点入栈,因为出栈的顺序是相反的,所以我们入栈的时候就要这样先入右节点再入左节点,这样出栈遍历的时候就能达成 “根左右” 的遍历方式了

其实核心的步骤就是这两步,那我们继续实现中序的非递归遍历

5. 中序遍历的非递归实现

代码与思路

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) (ans []int) {
    st := list.New()
    cur := root
    for cur != nil || st.Len() > 0 {
        if cur != nil {
            st.PushBack(cur)
            cur = cur.Left
        } else {
            cur = st.Remove(st.Back()).(*TreeNode)
            ans = append(ans, cur.Val)
            cur = cur.Right
        }
    }
    return ans
}

前序遍历的时候,我们就是不断计算根位置的值,然后只管用栈按顺序遍历二叉树就行了,但是到了中序遍历,我们需要取的是左节点的值,所以我们就需要在左节点遍历的时候边遍历边取值,我们来根据代码梳理一下他的流程

  1. 将当前节点入栈,然后一直往左遍历直到走到 nil
  2. 走到 nil 之后,上一个节点,也就是栈顶的元素就是最左节点,输出到 ans
  3. 然后往右遍历一步,持续这个三步循环

这三步模拟的就是 “左根右” 的遍历方式,刚好也是三步,找到最左,取根,找右,循环往复,就能完成中序遍历了。迭代算法确实不太好想,但是上手模拟一遍还是比较好理解的。

6. 后序遍历的非递归实现

代码与思路

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func postorderTraversal(root *TreeNode) (ans []int) {
    if root == nil {
        return
    }
    st := list.New()
    st.PushBack(root)
    for st.Len() > 0 {
        node := st.Remove(st.Back()).(*TreeNode)
        ans = append(ans, node.Val)
        if node.Left != nil {
            st.PushBack(node.Left)
        }
        if node.Right != nil {
            st.PushBack(node.Right)
        }
    }
    reverse(ans)
    return ans
}
func reverse(a []int) { // 反转数组
    l, r := 0, len(a)-1
    for l < r {
        a[l], a[r] = a[r], a[l]
        l, r = l+1, r-1
    }
}

后序遍历有一个非常巧妙的解法:因为前序遍历是 “根左右”,后续遍历是 “左右根”,如果我们根据 “根右左” 的顺序来进行遍历,然后再将结果进行反转就能将 “根右左” -> “左右根”,这样就完成了后续遍历,也就是我们只需要修改一下前序遍历的代码即可

就那上述代码来说,我将遍历左右的顺序进行了调换,然后实现了一个 reverse 反转数组(go 语言没有 C++ 那样提供 STL,难受)按照刚刚分析出来的思路实现后序遍历。

总结

基础不牢,地动山摇,把二叉树的前中后序学会,我们下一节挑战二叉树的广度优先遍历,又或者说,二叉树的层序遍历。

相关文章
|
3天前
|
算法 Java
LeetCode第94题二叉树的中序遍历
文章介绍了LeetCode第94题"二叉树的中序遍历"的解法,使用递归实现了中序遍历的过程,遵循了"左根右"的遍历顺序,并提供了清晰的Java代码实现。
LeetCode第94题二叉树的中序遍历
|
10天前
|
算法 Java
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
27 6
|
10天前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
25 1
|
10天前
|
存储 算法 Java
LeetCode经典算法题:预测赢家+香槟塔java解法
LeetCode经典算法题:预测赢家+香槟塔java解法
22 1
|
10天前
|
存储 算法 Java
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
29 0
|
6天前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
5天前
|
机器学习/深度学习 算法 定位技术
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
11 3
|
6天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
1月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
16天前
|
算法 5G vr&ar
基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真
在现代无线通信中,1-bit DAC的非线性预编码技术应用于MU-MIMO系统,旨在降低成本与能耗。本文采用MATLAB 2022a版本,深入探讨此技术,并通过算法运行效果图展示性能。核心代码支持中文注释与操作指导。理论部分包括信号量化、符号最大化准则,并对比ZF、WF、MRT及ADMM等算法,揭示了在1-bit量化条件下如何优化预编码以提升系统性能。