从机器学习开始就正式进入到了人工智能的领域。ML涉及的算法都是白盒算法,使用可解释的数学公式去拟合数据、学习参数然后进行预测,最后对模型进行评估。
这部分的知识需要大家从数据处理过程开始就多进行总结与反思:
数据清洗过程与特征工程是怎么做的?为什么会最终选用这些方法?
文本数据集常用的处理方法有哪些?适用的场景的是什么?
机器学习算法因为都有可解释性,所以大家需要搞懂数学原理,并知道模型之间的差异、以及适用于什么数据集。
对于回归任务与分类任务,我们也需要知道各种评估指标间的差异与使用场景。
网络资源推荐
吴恩达机器学习:此教程以理论为主,对小白极为友善,就算没有基础,也能以最快的速度入门机器学习。
菜菜的sklearn:此教程以实践为主,从数据处理、特征工程、到模型算法都会给予代码进行实操讲解,并将每个参数都讲的非常细致。
书籍推荐
这里推荐两本学习ML必备书籍。周志华老师的《机器学习(西瓜书)》与李航老师的《统计学习方法》。
这部分给大家推荐书籍《图解深度学习》与《深度学习》。前者用图解的方式剖析了深度学习的原理,适合初学者;后者是深度学习领域奠基性的经典教程。
神经网络入门
浙大研究生课程:浙大老师上课录像,板书推导神经网络的原理,看完后你会入门深度学习,并感受到它的神奇与魅力。(P19-P24为神经网络)
CNN与RNN入门
吴恩达深度学习:首推荐还是吴恩达老师的课程:
不论往哪个方向发展,都先看神经网络部分
如果你之后想学图像方向,就接着看计算机视觉部分,然后对序列模型进行了解
如果准备往自然语言或推荐方向发展,则推荐先看计算机视觉部分,掌握CNN的基本常识后,再去学习序列模型全部内容
白板推导系列:机器学习与深度学习数学原理板书推导,极为硬核。
在学完理论知识后,我们就可以找一些项目进行实战了。