【提示学习】Prompt Tuning for Multi-Label Text Classification: How to Link Exercises to Knowledge Concept

简介: 文章这里使用的是BCEWithLogitsLoss,它适用于多标签分类。即:把[MASK]位置预测到的词表的值进行sigmoid,取指定阈值以上的标签,然后算损失。

阅读摘要



 如上图,思路很朴实无华。


  普通MLM任务使用的损失函数是CrossEntropyLoss,它适用于单标签,代码如下:


masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))


文章这里使用的是BCEWithLogitsLoss,它适用于多标签分类。即:把[MASK]位置预测到的词表的值进行sigmoid,取指定阈值以上的标签,然后算损失。


个人觉得这样不可取,效果也不会好。

目录
打赏
0
0
0
0
176
分享
相关文章
【提示学习】Label prompt for multi-label text classification
  标签文本分类的关键问题之一是提取和利用标签之间的相关性,但直接建模标签之间的相关性很难。   LP-MTC设计了多标签文本分类模板,将标签整合到预训练语言模型的输入中,可以捕获标签之间的相关性以及标签与文本之间的语义信息,从而有效地提高模型的性能。
135 0
文献解读-Prediction of axillary lymph node metastasis in triple-negative breast cancer by multi-omics analysis and an integrated model
研究旨在为三阴性乳腺癌患者提供更准确的腋窝淋巴结转移风险评估工具。研究者综合分析了临床病理信息、基因组和转录组数据,构建了一个多组学预测模型。
45 4
【提示学习】HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification
本文是较早把Prompt应用到层级多标签文本分类领域的论文。思路是把层级标签分层编入到Pattern中,然后修改损失函数以适应多标签的分类任务。
301 0
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
101 1
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
这是一篇用GAN做文本生成图像(Text to Image)的综述阅读报告。 综述名为:《A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis》,发表于2019年,其将文本生成图像分类为Semantic Enhancement GANs, Resolution Enhancement GANs, Diversity Enhancement GANs, Motion Enhancement GANs四类,并且介绍了代表性model。
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
【提示学习】Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文基于PVP,提出PET与iPET,但是关注点在利用半监督扩充自己的数据集,让最终模型学习很多样本,从而达到好效果。
156 0
DEGREE: A Data-Efficient Generation-Based Event Extraction Model论文解读
事件抽取需要专家进行高质量的人工标注,这通常很昂贵。因此,学习一个仅用少数标记示例就能训练的数据高效事件抽取模型已成为一个至关重要的挑战。
231 0
SS-AGA:Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment 论文解读
预测知识图(KG)中缺失的事实是至关重要的,因为现代知识图远未补全。由于劳动密集型的人类标签,当处理以各种语言表示的知识时,这种现象会恶化。
134 0
LASS: Joint Language Semantic and Structure Embedding for Knowledge Graph Completion 论文解读
补全知识三元组的任务具有广泛的下游应用。结构信息和语义信息在知识图补全中都起着重要作用。与以往依赖知识图谱的结构或语义的方法不同
167 0