大数据框架NiFi

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: NiFi 是一个易于使用,功能强大,可靠的处理和分发数据框架。主要用于数据的同步传输,支持灵活的数据格式转换,同时可以设置定时调度任务,他是一个数据同步框架,类似于 kettle。

大数据框架NiFi


一、NiFi介绍


NiFi 最初由美国国家安全局(NSA)开发和使用的一个可视化、可定制的数据集成产品。2014 年 NSA 将其贡献给了 Apache 开源社区,2015 年 7 月成为 Apache 顶级项目

他是一个易于使用,功能强大,可靠的处理和分发数据框架。主要用于数据的同步传输,支持灵活的数据格式转换,同时可以设置定时调度任务,他是一个数据同步框架,类似于 kettle。

市面上类似的数据同步框架有,Datax,flume等

优点是官方提供了一个webui,所有的操作都可以通过鼠标拖拽来完成。


二、术语概念


NiFi术语 描述
FlowFile 数据在NIFI中传输时封装的对象,分为属性(attribute)和内容,其中属性是键值对的头信息,内容为字符串。
FlowFile Processor 数据处理器组件,通过选择不同的处理器,对数据进行不同的读写或者转换清洗等操作。
Connection 处理器直接的连接,单个处理器可以有多个连接完成数据的分流。
Flow Controller 流控制器管理连接器中的资源分配。
Process Group 处理组,将多个处理器连接的链路封装起来作为一个组管理。


三、下载安装


  1. 官网地址:nifi.apache.org/
  2. 下载地址:nifi.apache.org/download.ht…

将下载的文件nifi-1.19.1-bin.zip,上传到服务器的/opt/目录

新建一个文件夹,nifi,并将nifi-1.19.1-bin.zip 解压到该目录

unzip nifi-1.19.1-bin.zip -d /opt/nifi

如果没有unzip的话,需要下载一个

复制代码

sudo yum -y install unzip

NiFi核心配置

(1)修改web地址和端口号


vim conf/nifi.properties
# 152行(默认127.0.0.1,外部无法访问)
nifi.web.https.host=服务器实际IP
nifi.web.https.port=8443

(2)设置登录账号

密码有要求,最低12位


bin/nifi.sh set-single-user-credentials admin 123456789012


启动:

(1)NiFi后台启动/关闭命令


bin/nifi.sh startbin/nifi.sh stopbin/nifi.sh status

(2)NiFi前台启动/关闭命令


bin/nifi.sh run #Ctrl+c 关闭

(3)web访问

http://hadoop102:8443/nifi

输入账号密码即可进入控制台


四、使用


nifi.png

我们现在可以通过在画布中添加Processor来开始创建数据流。

各个处理器的用途及配置在官网上都有介绍,大约提供了近300个常用处理器。包含但不限于:数据格式转换、数据采集、数据(local/kafka/solr/hdfs/hbase/mysql/hive/http等)的读写等功能,使用方便,如果不能满足需求,还可以自定义处理器


  1. 可以从文件目录同步文件
  2. 可以从mysql等数据库同步数据到hdfs
  3. 可以消费kafka消息,同步到指定的系统



网上学习资料:


  1. www.bilibili.com/video/BV14v…


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
80 7
|
1月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
96 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
115 2
|
4月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
182 0
|
5月前
|
数据采集 分布式计算 MaxCompute
MaxCompute 分布式计算框架 MaxFrame 服务正式商业化公告
MaxCompute 分布式计算框架 MaxFrame 服务于北京时间2024年09月27日正式商业化!
133 3
|
6月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
107 0
|
7月前
|
分布式计算 安全 大数据
HAS插件式Kerberos认证框架:构建安全可靠的大数据生态系统
在教育和科研领域,研究人员需要共享大量数据以促进合作。HAS框架可以提供一个安全的数据共享平台,确保数据的安全性和合规性。
|
7月前
|
存储 分布式计算 MaxCompute
构建NLP 开发问题之如何支持其他存储介质(如 HDFS、ODPS Volumn)在 transformers 框架中
构建NLP 开发问题之如何支持其他存储介质(如 HDFS、ODPS Volumn)在 transformers 框架中
|
8月前
|
SQL 分布式计算 大数据
MaxCompute产品使用问题之odps sql 底层计算框架是MR吗
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
8月前
|
分布式计算 大数据 数据处理
经典大数据处理框架与通用架构对比
【6月更文挑战第15天】本文介绍Apache Beam是谷歌开源的统一数据处理框架,提供可移植API,支持批处理和流处理。与其他架构相比,Lambda和Kappa分别专注于实时和流处理,而Beam在两者之间提供平衡,具备高实时性和数据一致性,但复杂性较高。选择架构应基于业务需求和场景。
596 3
经典大数据处理框架与通用架构对比