Java中的线程

简介: 线程与进程进程程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的。当一个程序被运行,从磁盘加载这个程序的代码至内存,这时就开启了一个进程。进程就可以视为程序的一个实例。大部分程序可以同时运行多个实例进程(例如记事本、画图、浏览器 等),也有的程序只能启动一个实例进程(例如网易云音乐、360 安全卫士等)线程一个进程之内可以分为一到多个线程。一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行 。Java 中,线程作为

线程与进程
进程

程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的。
当一个程序被运行,从磁盘加载这个程序的代码至内存,这时就开启了一个进程。
进程就可以视为程序的一个实例。大部分程序可以同时运行多个实例进程(例如记事本、画图、浏览器 等),也有的程序只能启动一个实例进程(例如网易云音乐、360 安全卫士等)
线程

一个进程之内可以分为一到多个线程。
一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行 。
Java 中,线程作为小调度单位,进程作为资源分配的小单位。 在 windows 中进程是不活动的,只是作为线程的容器
两者对比

进程基本上相互独立的,而线程存在于进程内,是进程的一个子集

进程拥有共享的资源,如内存空间等,供其内部的线程共享

进程间通信较为复杂

同一台计算机的进程通信称为 IPC(Inter-process communication)
不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量

线程更轻量,线程上下文切换成本一般上要比进程上下文切换低

上下文切换后面会提到

并行与并发
在单核 cpu 下,线程实际还是串行执行的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows 下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于 cpu 在线程间(时间片很短)的切换非常快,人类感觉是同时运行的 。

一般会将这种线程轮流使用 CPU 的做法称为并发(concurrent)

CPU 时间片 1 时间片 2 时间片 3 时间片 4
core 线程 1 线程 2 线程 3 线程 4

多核 cpu下,每个 核(core) 都可以调度运行线程,这时候线程可以是并行的。

CPU 时间片 1 时间片 2 时间片 3 时间片 4
core1 线程 1 线程 2 线程 3 线程 4
core2 线程 4 线程 4 线程 2 线程 2

事实上,大多数时候并行和并发是同时存在的,因为线程数大于核心数的情况经常发生,所以这个时候就还是需要任务调度器使用并发的那套处理方法。

引用 Rob Pike 的一段描述:
并发(concurrent)是同一时间应对(dealing with)多件事情的能力 。
并行(parallel)是同一时间动手做(doing)多件事情的能力。

例子:

家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发
雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是并行
家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一 个人用锅时,另一个人就得等待)
进程与线程应用
应用之异步调用
以调用方的角度讲:

如果需要等待结果返回才能继续运行的话就是同步
如果不需要等待就是异步
设计
多线程可以使方法的执行变成异步的,比如说读取磁盘文件时,假设读取操作花费了5秒,如果没有线程的调度机制,这么cpu只能等5秒,啥都不能做。

结论

比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换,避免阻塞主线程
tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程
ui 程序中,开线程进行其他操作,避免阻塞 ui 线程
应用之提高效率
充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。

计算 1 花费 10 ms
计算 2 花费 11 ms
计算 3 花费 9 ms
汇总需要 1 ms
1
2
3
4
如果是串行执行,那么总共花费的时间是 10 + 11 + 9 + 1 = 31ms

但如果是四核 cpu,各个核心分别使用线程 1 执行计算 1,线程 2 执行计算 2,线程 3 执行计算 3,那么 3 个 线程是并行的,花费时间只取决于最长的那个线程运行的时间,即 11ms 最后加上汇总时间只会花费 12ms

注意:

需要在多核 cpu 才能提高效率,单核仍然时是轮流执行

结论:

单核 cpu 下,多线程不能实际提高程序运行效率,只是为了能够在不同的任务之间切换,不同线程轮流使用 cpu ,不至于一个线程总占用 cpu,别的线程没法干活
多核 cpu 可以并行跑多个线程,但能否提高程序运行效率还是要分情况的
有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任务都能拆分(参考【阿姆达尔定律】)
也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义
IO 操作不占用 cpu,只是我们一般拷贝文件使用的是【阻塞 IO】,这时相当于线程虽然不用 cpu,但需要一 直等待 IO 结束,没能充分利用线程。所以才有后面的【非阻塞 IO】和【异步 IO】优化。
线程的创建
方法一:继承Thread类
//创建线程对象
// 构造方法的参数是给线程指定名字,,推荐给线程起个名字
Thread t1 = new Thread("t1") {
@Override
// run 方法内实现了要执行的任务
public void run() {
log.debug("hello");
}
};
//启动线程
t1.start();
1
2
3
4
5
6
7
8
9
10
11
注意:

使用继承方式的好处是,在run()方法内获取当前线程直接使用this就可以了,无须使用Thread.currentThread()方法;
不好的地方是Java不支持多继承,如果继承了Thread类,那么就不能再继承其他类。
另外任务与代码没有分离,当多个线程执行一样的任务时需要多份任务代码
方法二:实现Runnable
把【线程】和【任务】(要执行的代码)分开,

Thread 代表线程,
Runnable 可运行的任务(线程要执行的代码)
public class Test2 {
public static void main(String[] args) {
//创建线程任务
Runnable r = new Runnable() {
@Override
public void run() {
System.out.println("Runnable running");
}
};
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t = new Thread(r, "t2");
//启动线程
t.start();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Java 8 以后可以使用 lambda 精简代码;

当一个接口带有@FunctionalInterface注解时,是可以使用lambda来简化操作的

// 创建任务对象
Runnable task2 = () -> log.debug("hello");
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();
1
2
3
4
5
方法三:实现Callable接口
Callable接口call方法有返回值,是个泛型,和Future、FutureTask配合可以用来获取异步执行的结果

public class Test3 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//需要传入一个Callable对象
FutureTask task = new FutureTask(new Callable() {
@Override
public Integer call() throws Exception {
System.out.println("线程执行!");
Thread.sleep(1000);
return 100;
}
});

    Thread r1 = new Thread(task, "t2");
    r1.start();
    //获取线程中方法执行后的返回结果
    System.out.println(task.get());
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
或者

// 创建任务对象
FutureTask task3 = new FutureTask<>(() -> {
log.debug("hello");
return 100;
});
// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(task3, "t3").start();
// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);
1
2
3
4
5
6
7
8
9
10
注意:

FutureTask实现了RunnableFuture接口,而RunnableFuture接口继承了Runnable和Future接口

FutureTask内置了一个Callable对象,初始化方法将指定的Callable赋给这个对象。

FutureTask实现了Runnable接口,并重写了Run方法,在Run方法中调用了Callable中的call方法,并将返回值赋值给outcome变量

get方法就是取出outcome的值。

Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。

Future提供了三种功能:
判断任务是否完成;
能够中断任务;
能够获取任务执行结果。
Callable与Runnable接口相似,但是也有区别:

Runnable 接口run方法没有返回值;Callable接口call方法有返回值,是个泛型,和Future、FutureTask配合可以用来获取异步执行的结果
Callalbe接口支持返回执行结果,需要调用FutureTask.get()得到,此方法会阻塞主进程的继续往下执行,如果不调用不会阻塞。
Callable接口的call()方法允许抛出异常;而Runnable接口的run()方法的异常只能在内部消化,不能继续上抛
方法四:线程池创建线程
public class MyExecutors implements Runnable{

@Override
public void run() {
    System.out.println("MyRunnable...run...");
}

public static void main(String[] args) {

    // 创建线程池对象
    ExecutorService threadPool = Executors.newFixedThreadPool(3);
    threadPool.submit(new MyExecutors()) ;

    // 关闭线程池
    threadPool.shutdown();

}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
查看进程和线程的方法
windows

任务管理器可以查看进程和线程数,也可以用来杀死进程
tasklist 查看进程
tasklist | findstr (查找关键字)
taskkill 杀死进程
taskkill /F(彻底杀死)/PID(进程PID)
Linux

ps -fe 查看所有进程
ps -fT -p 查看某个进程(PID)的所有线程
kill 杀死进程 top 按大写 H 切换是否显示线程
top -H -p 查看某个进程(PID)的所有线程
Java

jps 命令查看所有 Java 进程
jstack 查看某个 Java 进程(PID)的所有线程状态
jconsole 来查看某个 Java 进程中线程的运行情况(图形界面)
jconsole 远程监控配置

需要以如下方式运行你的 java 类

java -Djava.rmi.server.hostname=ip地址 -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.port=连接端口 -Dcom.sun.management.jmxremote.ssl=是否安全连接 -
Dcom.sun.management.jmxremote.authenticate=是否认证 java类
1
2
3
关闭防火墙,允许端口

修改 /etc/hosts 文件将 127.0.0.1 映射至主机名

如果要认证访问,还需要做如下步骤

复制 jmxremote.password 文件
修改 jmxremote.password 和 jmxremote.access 文件的权限为 600 即文件所有者可读写
连接时填入 controlRole(用户名),R&D(密码)
线程运行的原理
栈与栈帧
Java Virtual Machine Stacks (Java 虚拟机栈)

我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟 机就会为其分配一块栈内存。

每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法,也就是栈顶的那个方法
我们来看一个例子:

public class TestFrames {
public static void main(String[] args) {
method1(10);
}

private static void method1(int x) {
    int y = x + 1;
    Object m = method2();
    System.out.println(m);
}

private static Object method2() {
    Object n = new Object();
    return n;
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

注意;

方法区在jvm启动的时候被创建,其也是逻辑上的栈结构,但是里面放的是对用的jvm认识的字节码指令集,跟图中的方法区并不是完全一样
方法区是所有Java虚拟机线程的共享区,但是栈区域是每个线程独立的
线程上下文切换(Thread Context Switch)
线程上下文切换:因为某一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码

有如下四个比较常见的线程上下文发生切换的原因:

线程的 cpu 时间片用完
垃圾回收
有更高优先级的线程需要运行
线程自己调用了 sleep、yield、wait、join、park、synchronized、lock 等方法
当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念 就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的

状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
Context Switch 频繁发生会影响性能
线程中的常见方法
方法 功能 说明
public void start() 启动一个新线程;Java虚拟机调用此线程的run方法 start 方法只是让线程进入就绪,里面代码不一定立刻 运行(CPU 的时间片还没分给它)。每个线程对象的 start方法只能调用一次,如果调用了多次会出现 IllegalThreadStateException
public void run() 线程启动后调用该方法 如果在构造 Thread 对象时传递了 Runnable 参数,则 线程启动后会调用 Runnable 中的 run 方法,否则默 认不执行任何操作。但可以创建 Thread 的子类对象, 来覆盖默认行为
public void setName(String name) 给当前线程取名字
public void getName() 获取当前线程的名字。线程存在默认名称:子线程是Thread-索引,主线程是main
public static Thread currentThread() 获取当前线程对象,代码在哪个线程中执行
public static void sleep(long time) 让当前线程休眠多少毫秒再继续执行。Thread.sleep(0) : 让操作系统立刻重新进行一次cpu竞争
public static native void yield() 提示线程调度器让出当前线程对CPU的使用 主要是为了测试和调试
public final int getPriority() 返回此线程的优先级
public final void setPriority(int priority) 更改此线程的优先级,常用1 5 10 java中规定线程优先级是1~10 的整数,较大的优先级 能提高该线程被 CPU 调度的机率
public void interrupt() 中断这个线程,异常处理机制
public static boolean interrupted() 判断当前线程是否被打断,清除打断标记
public boolean isInterrupted() 判断当前线程是否被打断,不清除打断标记
public final void join() 等待这个线程结束
public final void join(long millis) 等待这个线程死亡millis毫秒,0意味着永远等待
public final native boolean isAlive() 线程是否存活(还没有运行完毕)
public final void setDaemon(boolean on) 将此线程标记为守护线程或用户线程
public long getId() 获取线程长整型 的 id id 唯一
public state getState() 获取线程状态 Java 中线程状态是用 6 个 enum 表示,分别为: NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED
public boolean isInterrupted() 判断是否被打 断 不会清除 打断标记
start 与 run
我们知道start用来启动线程,而run表示线程启动之后要执行的代码。那么我们能不能直接调用run方法来执行多线程任务呢?

调用 run

public static void main(String[] args) {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug(Thread.currentThread().getName());
FileReader.read(Constants.MP4_FULL_PATH);
}
};
t1.run();
log.debug("do other things ...");
}
1
2
3
4
5
6
7
8
9
10
11
输出

19:39:14 [main] c.TestStart - main
19:39:14 [main] c.FileReader - read [1.mp4] start ...
19:39:18 [main] c.FileReader - read [1.mp4] end ... cost: 4227 ms
19:39:18 [main] c.TestStart - do other things ...
1
2
3
4
程序仍在 main 线程运行, FileReader.read() 方法调用还是同步的

调用start

将上述代码的 t1.run() 改为

t1.start();
1
输出

19:41:30 [main] c.TestStart - do other things ...
19:41:30 [t1] c.TestStart - t1
19:41:30 [t1] c.FileReader - read [1.mp4] start ...
19:41:35 [t1] c.FileReader - read [1.mp4] end ... cost: 4542 ms
1
2
3
4
程序在 t1 线程运行, FileReader.read() 方法调用是异步的

小结

直接调用 run 是在主线程中执行了 run,没有启动新的线程

使用 start 是启动新的线程,通过新的线程间接执行 run 中的代码

public static void main(String[] args) {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug("running...");
}
};
System.out.println(t1.getState());
t1.start();
System.out.println(t1.getState());
}
1
2
3
4
5
6
7
8
9
10
11
可以看见,start方法创建了一个新线程,将线程从就绪状态切换为Runnable

NEW
RUNNABLE
03:45:12.255 c.Test5 [t1] - running...
1
2
3
sleep、yield与线程优先级
sleep

调用 sleep 会让当前线程从 Running 进入 Timed Waiting 状态(阻塞)

其它线程可以使用 interrupt 方法打断正在睡眠的线程(也就是叫醒),这时 sleep 方法会抛出 InterruptedException

public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug("enter sleep...");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
log.debug("wake up...");
e.printStackTrace();
}
}
};
t1.start();

Thread.sleep(1000);
log.debug("interrupt...");
t1.interrupt();

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
输出结果:

03:47:18.141 c.Test7 [t1] - enter sleep...
03:47:19.132 c.Test7 [main] - interrupt...
03:47:19.132 c.Test7 [t1] - wake up...
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at cn.itcast.test.Test7$1.run(Test7.java:14)
1
2
3
4
5
6
睡眠结束后的线程未必会立刻得到执行

建议用 TimeUnit 的 sleep 代替 Thread 的 sleep 来获得更好的可读性 。其底层还是sleep方法。

@Slf4j(topic = "c.Test8")
public class Test8 {

public static void main(String[] args) throws InterruptedException {
    log.debug("enter");
    TimeUnit.SECONDS.sleep(1);
    log.debug("end");

// Thread.sleep(1000);
}
}
1
2
3
4
5
6
7
8
9
10
在循环访问锁的过程中,可以加入sleep让线程阻塞时间,防止大量占用cpu资源。

yield

调用 yield 会让当前线程从 Running 进入 Runnable 就绪状态,然后调度执行其它线程
具体的实现依赖于操作系统的任务调度器
Runnable 就绪状态和Timed Waiting 状态都是为了将CPU的使用权让出去,但是他们的区别在于:Runnable状态还是有可能会分到时间片,而Timed Waiting状态在设置的休眠时间之内是不会得到时间片的。

线程优先级

线程优先级会提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它
如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用
测试优先级和yield

@Slf4j(topic = "c.TestYield")
public class TestYield {
public static void main(String[] args) {
Runnable task1 = () -> {
int count = 0;
for (;;) {
System.out.println("---->1 " + count++);
}
};
Runnable task2 = () -> {
int count = 0;
for (;;) {
// Thread.yield();
System.out.println(" ---->2 " + count++);
}
};
Thread t1 = new Thread(task1, "t1");
Thread t2 = new Thread(task2, "t2");
t1.setPriority(Thread.MIN_PRIORITY);
t2.setPriority(Thread.MAX_PRIORITY);
t1.start();
t2.start();
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
测试结果:

优先级

---->1 283500
---->2 374389

yield

---->1 119199
---->2 101074
1
2
3
4
5
6
可以看出,线程优先级和yield会对线程获取cpu时间片产生一定影响,但不会影响太大。

sleep的应用:防止CPU占用过高
while true的无限循环在做一些服务器开发的时候会用到。比如说我们编写一个服务端的程序,那他就需要服务器的多线程不断运行来处理请求返回响应。

sleep 实现

在没有利用 cpu 来计算时,不要让 while(true) 空转浪费 cpu,这时可以使用 yield 或 sleep 来让出 cpu 的使用权 给其他程序

while(true) {
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
1
2
3
4
5
6
7
使用前:

使用后:

可以用 wait 或 条件变量达到类似的效果
不同的是,后两种都需要加锁,并且需要相应的唤醒操作,一般适用于要进行同步的场景
sleep 适用于无需锁同步的场景
wait 实现

synchronized(锁对象) {
while(条件不满足) {
try {
锁对象.wait();
} catch(InterruptedException e) {
e.printStackTrace();
}
}
// do sth...
}
1
2
3
4
5
6
7
8
9
10
条件变量实现

lock.lock();
try {
while(条件不满足) {
try {
条件变量.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// do sth...
} finally {
lock.unlock();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
join
为什么需要 join

下面的代码执行,打印 r 是什么?

static int r = 0;
public static void main(String[] args) throws InterruptedException {
test1();
}
private static void test1() throws InterruptedException {
log.debug("开始");
Thread t1 = new Thread(() -> {
log.debug("开始");
sleep(1);
log.debug("结束");
r = 10;
});
t1.start();
log.debug("结果为:{}", r);
log.debug("结束");
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
分析

因为主线程和线程 t1 是并行执行的,t1 线程需要 1 秒之后才能算出 r=10
而主线程一开始就要打印 r 的结果,所以只能打印出 r=0
解决方法

用 sleep 行不行?为什么?
如果用sleep也可以但是你不知道线程t1要运行多长时间,设置长了影响效率,设置短了t1可能还没执行完
用 join,在 t1.start() 之后加上t1.join即可
同步的应用
以调用方角度来讲,如果

需要等待结果返回,才能继续运行就是同步
不需要等待结果返回,就能继续运行就是异步

等待多个结果

问,下面代码 cost 大约多少秒?

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test2();
}
private static void test2() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(1);
r1 = 10;
});
Thread t2 = new Thread(() -> {
sleep(2);
r2 = 20;
});
long start = System.currentTimeMillis();
t1.start();
t2.start();
t1.join();
t2.join();
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
分析如下

第一个 join:等待 t1 时, t2 并没有停止, 而在运行
第二个 join:1s 后, 执行到此, t2 也运行了 1s, 因此也只需再等待 1s
也就是说花费了两秒

如果颠倒两个 join 呢?

最终都是输出

20:45:43.239 [main] c.TestJoin - r1: 10 r2: 20 cost: 2005
1

interrupt方法详解
用于打断阻塞(sleep wait join…)的线程。 处于阻塞状态的线程,CPU不会给其分配时间片。

如果一个线程在在运行中被打断,打断标记会被置为true。
如果是打断因sleep、wait、join方法而被阻塞的线程,会将打断标记置为false,并立即结束阻塞状态
//用于查看打断标记,返回值为boolean类型
t1.isInterrupted();
1
2

我们查看打断标记有两种方法,isInterrupted不会清除打断标记。但是interrupted会清除打断标记,也就是说如果我们当前打断标记为True使用interrupted查询返回True,随后打断标记为false,也就是被清除。

打断机制:

正常运行的线程在被打断后,不会停止,会继续执行。如果要让线程在被打断后停下来,可以借助打断标记来判断。
while(true) {
if(Thread.currentThread().isInterrupted()) {
break;
}
}
1
2
3
4
5
因sleep、wait、join方法而被阻塞的线程被打断后会抛出异常,并立即结束阻塞状态。
线程检测到中断标识后抛出InterruptedException异常,线程抛出异常后,会清除标识,然后继续执行

总结来说,interrupt()只是设置一个线程的中断标志,真正的中断效果还依赖于被中断线程的配合。

interrupt方法的应用——两阶段终止模式
在一个线程T1中如何优雅的终止线程T2,也就是让T2有终止前的准备工作?

注意:
如下两种方法是错误的:

使用线程对象的stop方法停止线程
stop方法会真正杀死线程,如果这是线程锁住了共享资源,那么当他被杀死后就再也没有机会释放锁,其他线程将永远无法获取锁
使用System.exit(int)方法停止线程
目的仅是停止一个线程,但这种做法会让整个程序都停止
这里我们就可以使用interrupt方法来实现两阶段终止模式。

比如现在我们在做一个程序可以帮助我们监控电脑的运行状况,如果我们想要把他暂停应该怎么做?

从这个流程图中我们可以看到如果我们在非睡眠的情况下被打断了,那么打断标记就是true,我们根据这个标记让线程处理后事。如果是在睡眠的时候被打断,那么会抛出一个异常,我们捕获这个异常之后,再去设置打断标记,当新的一轮循环检测标记,也会让线程料理后事,然后才结束循环。

我们有如下两种代码实现:

利用 isInterrupted

interrupt 可以打断正在执行的线程,无论这个线程是在 sleep,wait,还是正常运行

class TPTInterrupt {
private Thread thread;
public void start(){
thread = new Thread(() -> {
while(true) {
Thread current = Thread.currentThread();
if(current.isInterrupted()) {
log.debug("料理后事");
break;
}
try {
Thread.sleep(1000);
log.debug("将结果保存");
} catch (InterruptedException e) {
current.interrupt();
}
// 执行监控操作
}
},"监控线程");
thread.start();
}
public void stop() {
thread.interrupt();
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
调用

TPTInterrupt t = new TPTInterrupt();
t.start();
Thread.sleep(3500);
log.debug("stop");
t.stop();
1
2
3
4
5
结果

11:49:42.915 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:43.919 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:44.919 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:45.413 c.TestTwoPhaseTermination [main] - stop
11:49:45.413 c.TwoPhaseTermination [监控线程] - 料理后事
1
2
3
4
5
利用停止标记

// 停止标记用 volatile 是为了保证该变量在多个线程之间的可见性
// 我们的例子中,即主线程把它修改为 true 对 t1 线程可见
class TPTVolatile {
private Thread thread;
private volatile boolean stop = false;
public void start(){
thread = new Thread(() -> {
while(true) {
Thread current = Thread.currentThread();
if(stop) {
log.debug("料理后事");
break;
}
try {
Thread.sleep(1000);
log.debug("将结果保存");
} catch (InterruptedException e) {
}
// 执行监控操作
}
},"监控线程");
thread.start();
}
public void stop() {
stop = true;
thread.interrupt();
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
调用

TPTVolatile t = new TPTVolatile();
t.start();
Thread.sleep(3500);
log.debug("stop");
t.stop();
1
2
3
4
5
结果

11:54:52.003 c.TPTVolatile [监控线程] - 将结果保存
11:54:53.006 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.007 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.502 c.TestTwoPhaseTermination [main] - stop
11:54:54.502 c.TPTVolatile [监控线程] - 料理后事
1
2
3
4
5
使用interrupt打断park线程
打断 park 线程, 不会清空打断状态

private static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
log.debug("park...");
LockSupport.park();
log.debug("unpark...");
log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
}, "t1");
t1.start();
sleep(0.5);
t1.interrupt();
}
1
2
3
4
5
6
7
8
9
10
11
LockSupport.park()方法也会让当前线程停下来。而t1.interrupt()会进行打断,让线程继续进行。

输出

21:11:52.795 [t1] c.TestInterrupt - park...
21:11:53.295 [t1] c.TestInterrupt - unpark...
21:11:53.295 [t1] c.TestInterrupt - 打断状态:true
1
2
3
如果打断标记已经是 true, 则 park 会失效

private static void test4() {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5; i++) {
log.debug("park...");
LockSupport.park();
log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
}
});
t1.start();
sleep(1);
t1.interrupt();
}
1
2
3
4
5
6
7
8
9
10
11
12
输出

21:13:48.783 [Thread-0] c.TestInterrupt - park...
21:13:49.809 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.812 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
1
2
3
4
5
6
7
8
9
10
提示

可以使用 Thread.interrupted() 清除打断状态,让park方法恢复其作用。

不推荐使用的方法
还有一些不推荐使用的方法,这些方法已过时,容易破坏同步代码块,造成线程死锁

方法名 static 功能说明
stop() 停止线程运行
suspend() 挂起(暂停)线程运行
resume() 恢复线程运行
主线程和守护线程
默认情况下,Java 进程需要等待所有线程都运行结束,才会结束。有一种特殊的线程叫做守护线程,只要其它非守护线程运行结束了,即使守护线程的代码没有执行完,也会强制结束。

例:

log.debug("开始运行...");
Thread t1 = new Thread(() -> {
log.debug("开始运行...");
sleep(2);
log.debug("运行结束...");
}, "daemon");
// 设置该线程为守护线程
t1.setDaemon(true);
t1.start();
sleep(1);
log.debug("运行结束...");
1
2
3
4
5
6
7
8
9
10
11
输出:

08:26:38.123 [main] c.TestDaemon - 开始运行...
08:26:38.213 [daemon] c.TestDaemon - 开始运行...
08:26:39.215 [main] c.TestDaemon - 运行结束...
1
2
3
注意

垃圾回收器线程就是一种守护线程
Tomcat 中的 Acceptor 和 Poller 线程都是守护线程,所以 Tomcat 接收到 shutdown 命令后,不会等待它们处理完当前请求
线程的状态
五种状态
这是从 操作系统 层面来描述的

【初始状态】仅是在语言层面创建了线程对象,还未与操作系统线程关联(例如线程调用了start方法)

【可运行状态】(就绪状态)指该线程已经被创建(与操作系统线程关联),可以由 CPU 调度执行

【运行状态】指获取了 CPU 时间片运行中的状态

当 CPU 时间片用完,会从【运行状态】转换至【可运行状态】,会导致线程的上下文切换
【阻塞状态】

如果调用了阻塞 API,如 BIO 读写文件,这时该线程实际不会用到 CPU,会导致线程上下文切换,进入 【阻塞状态】
等 BIO 操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
与【可运行状态】的区别是,对【阻塞状态】的线程来说只要它们一直不唤醒,调度器就一直不会考虑调度它们
【终止状态】表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态

什么是阻塞?
线程进入阻塞状态就意味着会主动交出CPU,进入一种具有执行资格,但是没有执行权的状态。我们可以举个例子:读写文件。
读写文件:
当线程在进行文件读写操作时,它不需要占用CPU。
文件读写属于IO操作,在大部分时间里线程都在等待数据的实际读写,而不是占用CPU进行计算。所以,线程在此期间也会释放CPU。
具体来说,当一个线程调用read()或write()方法读写文件时:

如果文件数据在内存中,那么此次读写会很快完成,线程可以立即获得数据并继续运算。这段时间线程会占用CPU。
如果文件数据不在内存中,需要从磁盘加载或写入磁盘,那么线程会进入阻塞状态,释放CPU,等待磁盘操作完成。这个时间段线程不占用CPU。
文件数据加载到内存或写入磁盘完成后,内核会唤醒线程,线程继续运行并从被阻塞点继续执行。这时它又开始占用CPU。
所以,对于一个典型的读写文件操作,线程只有在真正读写文件数据在内存中时才会占用CPU,在加载/写入磁盘期间线程会阻塞并释放CPU。

六种状态
这是从 Java API 层面来描述的

根据 Thread.State 枚举,分为六种状态:

public enum State {
/**

     * 尚未启动的线程的线程状态
     */
    NEW,

    /**
     * 可运行线程的线程状态。处于可运行状态的线程正在 Java 虚拟机中执行,但它可能正在等待来自         * 操作系统的其他资源,例如处理器。
     */
    RUNNABLE,

    /**
     * 线程阻塞等待监视器锁的线程状态。处于阻塞状态的线程正在等待监视器锁进入同步块/方法或在调          * 用Object.wait后重新进入同步块/方法。
     */
    BLOCKED,

    /**
     * 等待线程的线程状态。由于调用以下方法之一,线程处于等待状态:
    * Object.wait没有超时
     * 没有超时的Thread.join
     * LockSupport.park
     * 处于等待状态的线程正在等待另一个线程执行特定操作。
     * 例如,一个对对象调用Object.wait()的线程正在等待另一个线程对该对象调用Object.notify()            * 或Object.notifyAll() 。已调用Thread.join()的线程正在等待指定线程终止。
     */
    WAITING,

    /**
     * 具有指定等待时间的等待线程的线程状态。由于以指定的正等待时间调用以下方法之一,线程处于定          * 时等待状态:
    * Thread.sleep
    * Object.wait超时
    * Thread.join超时
    * LockSupport.parkNanos
    * LockSupport.parkUntil
     * </ul>
     */
    TIMED_WAITING,

    /**
     * 已终止线程的线程状态。线程已完成执行
     */
    TERMINATED;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

新建
当一个线程对象被创建,但还未调用 start 方法时处于新建状态
此时未与操作系统底层线程关联
可运行
调用了 start 方法,就会由新建进入可运行
此时与底层线程关联,由操作系统调度执行
终结
线程内代码已经执行完毕,由可运行进入终结
此时会取消与底层线程关联
阻塞
当获取锁失败后,由可运行进入 Monitor 的阻塞队列阻塞,此时不占用 cpu 时间
当持锁线程释放锁时,会按照一定规则唤醒阻塞队列中的阻塞线程,唤醒后的线程进入可运行状态
等待
当获取锁成功后,但由于条件不满足,调用了 wait() 方法,此时从可运行状态释放锁进入 Monitor 等待集合等待,同样不占用 cpu 时间
当其它持锁线程调用 notify() 或 notifyAll() 方法,会按照一定规则唤醒等待集合中的等待线程,恢复为可运行状态
有时限等待
当获取锁成功后,但由于条件不满足,调用了 wait(long) 方法,此时从可运行状态释放锁进入 Monitor 等待集合进行有时限等待,同样不占用 cpu 时间
当其它持锁线程调用 notify() 或 notifyAll() 方法,会按照一定规则唤醒等待集合中的有时限等待线程,恢复为可运行状态,并重新去竞争锁
如果等待超时,也会从有时限等待状态恢复为可运行状态,并重新去竞争锁
还有一种情况是调用 sleep(long) 方法也会从可运行状态进入有时限等待状态,但与 Monitor 无关,不需要主动唤醒,超时时间到自然恢复为可运行状态
我们可以用代码演示一下这六种状态:

@Slf4j(topic = "c.TestState")
public class TestState {
public static void main(String[] args) throws IOException {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug("running...");
}
};

    Thread t2 = new Thread("t2") {
        @Override
        public void run() {
            while(true) { // runnable

            }
        }
    };
    t2.start();

    Thread t3 = new Thread("t3") {
        @Override
        public void run() {
            log.debug("running...");
        }
    };
    t3.start();

    Thread t4 = new Thread("t4") {
        @Override
        public void run() {
            synchronized (TestState.class) {
                try {
                    Thread.sleep(1000000); // timed_waiting
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    };
    t4.start();

    Thread t5 = new Thread("t5") {
        @Override
        public void run() {
            try {
                t2.join(); // waiting
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    };
    t5.start();

    Thread t6 = new Thread("t6") {
        @Override
        public void run() {
            synchronized (TestState.class) { // blocked
                try {
                    Thread.sleep(1000000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    };
    t6.start();

    try {
        Thread.sleep(500);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    log.debug("t1 state {}", t1.getState());
    log.debug("t2 state {}", t2.getState());
    log.debug("t3 state {}", t3.getState());
    log.debug("t4 state {}", t4.getState());
    log.debug("t5 state {}", t5.getState());
    log.debug("t6 state {}", t6.getState());
    System.in.read();
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
结果:

————————————————
版权声明:本文为CSDN博主「十八岁讨厌编程」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zyb18507175502/article/details/128729001

目录
相关文章
|
26天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
2天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
24 6
|
17天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
15天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
17天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
10天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
10天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
30 3
|
11天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
16天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
54 6
|
15天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
24 2