最快速度写出一个识别效果——OpenCV模板匹配(含代码)

简介: 最快速度写出一个识别效果——OpenCV模板匹配(含代码)

当我们需要在图像中查找特定的目标时,模板匹配(Template Matching)是一种常用的方法。通过比较模板图像(即目标图像)和原图像中各个位置的像素值,找到最相似的位置,即可定位目标区域。

在Python中,OpenCV提供了cv2.matchTemplate()函数来实现模板匹配。下面是简单的使用示例:

import cv2
import numpy as np
# 读取原图像和模板图像
img = cv2.imread('test.jpg')
template = cv2.imread('template.jpg')
# 获取模板图像的尺寸
h, w = template.shape[:2]
# 进行模板匹配
result = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)
# 寻找匹配程度最高的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
# 定位目标区域
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 在原图像中标记目标区域
cv2.rectangle(img, top_left, bottom_right, (0,0,255), 2)
# 显示结果
cv2.imshow('result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中,我们首先读取原图像和模板图像,并使用cv2.matchTemplate()函数进行模板匹配。然后使用cv2.minMaxLoc()函数寻找匹配程度最高的位置,并根据模板图像的尺寸计算出目标区域的左上角和右下角坐标。最后,在原图像中使用cv2.rectangle()函数标记目标区域。

需要注意的是,模板匹配有时可能会出现误判或漏判的情况,需要根据具体应用场景进行调整和优化。

目录
打赏
0
0
0
0
5
分享
相关文章
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
opencv在pycharm不能自动补全代码
opencv在pycharm不能自动补全代码
74 0
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
214 1
【OpenCV】- 模板匹配(浩瀚星空只为寻找那一抹明月)
【OpenCV】- 模板匹配(浩瀚星空只为寻找那一抹明月)
108 4
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问