synchronized 同步锁

简介: Java中的synchronized关键字用于实现线程同步,可以修饰方法或代码块。1. 修饰方法:当一个方法被synchronized修饰时,只有获得该方法的锁的线程才能执行该方法。其他线程需要等待锁的释放才能执行该方法。2. 修饰代码块:当某个对象被synchronized修饰时,任何线程在执行该对象中被synchronized修饰的代码块时,必须先获得该对象的锁。其他线程需要等待锁的释放才能执行同步代码块。Java中的每个对象都有一个内置锁,当一个对象被synchronized修饰时,它的内置锁就起作用了。只有获得该锁的线程才能访问被synchronized修饰的代码段。使用synch

 synchronized

一,介绍

Java中的synchronized关键字用于实现线程同步,可以修饰方法或代码块。

1. 修饰方法:当一个方法被synchronized修饰时,只有获得该方法的锁的线程才能执行该方法。其他线程需要等待锁的释放才能执行该方法。

2. 修饰代码块:当某个对象被synchronized修饰时,任何线程在执行该对象中被synchronized修饰的代码块时,必须先获得该对象的锁。其他线程需要等待锁的释放才能执行同步代码块。Java中的每个对象都有一个内置锁,当一个对象被synchronized修饰时,它的内置锁就起作用了。只有获得该锁的线程才能访问被synchronized修饰的代码段。使用synchronized可以保证多个线程对共享数据的访问顺序,避免了竞态条件和数据不一致的问题。注意:synchronized关键字只能保证同一对象内部的线程同步,不能保证多个对象的同步。如果需要多个对象之间的同步,可以考虑使用Lock接口的实现类。

二,锁升级

按照锁的升级顺序,可以将锁状态和过渡描述为以下几个步骤:

    1. 无锁状态(Unlocked):初始时,资源处于无锁状态,没有线程正在使用它。
    2. 偏向锁(Biased Locking):当一个线程第一次进入同步代码块时,会尝试获取偏向锁。如果成功,该线程会标记为拥有偏向锁,并记录下自己的线程 ID。这样,在未发生竞争的情况下,该线程后续访问同步代码块时可以快速获取锁,避免了重量级锁的开销。
    3. 轻量级锁(Lightweight Locking):当两个或多个线程开始竞争同一个锁时,偏向锁会升级为轻量级锁。此时,JVM 会使用 CAS(Compare and Swap)操作来尝试获取锁。如果成功,当前线程会获得轻量级锁,并继续执行临界区代码;如果失败,表示有其他线程持有锁,需要进行锁的膨胀。
    4. 自旋锁(Spin Locking):在轻量级锁的基础上,为了避免线程阻塞和降低线程切换的开销,如果获取轻量级锁失败,当前线程会选择进行自旋,即忙等待一段时间。它会尝试多次使用 CAS 操作来获取锁,期望其他线程能够快速释放锁。如果在自旋期间成功获取了锁,线程可以继续执行临界区代码;否则,会进一步升级为重量级锁。
    5. 重量级锁(Heavyweight Locking):当自旋锁无法获取到锁时或自旋次数达到一定阈值,轻量级锁会膨胀为重量级锁。此时,JVM 使用操作系统的互斥量(Mutex)来实现锁,并将当前线程阻塞,直到获取到锁为止。其他线程需要等待持有锁的线程释放锁后才能获取锁并执行临界区代码。

    这是锁状态的一个常见升级顺序,它描述了锁的不同阶段和相应的过渡。但需要注意的是,在具体实现中,JVM 和不同的 Java 版本可能会有一些优化和变化,因此实际的锁升级过程可能略有不同。

    锁会升级的主要原因是为了解决并发环境下的线程竞争和保证数据的一致性。当多个线程同时竞争同一个锁时,如果使用低级别的锁(如偏向锁或轻量级锁),可能会导致一些问题,例如:

      1. 竞争激烈:如果多个线程频繁地竞争同一个锁,轻量级锁的 CAS 操作可能会失败,导致自旋失败,增加了线程切换的开销。
      2. 锁撤销:偏向锁只能保证在没有竞争的情况下加锁的效率,一旦有其他线程竞争锁,就需要将偏向锁撤销,转而升级为更高级别的锁。
      3. 锁膨胀:对于长时间持有锁的线程,自旋可能会浪费大量的 CPU 时间,不仅影响性能,还会导致其他线程无法及时获取锁。此时,将轻量级锁膨胀为重量级锁,可以将持有锁的线程阻塞,避免自旋带来的性能损耗。

      因此,为了提高并发的效率和线程安全性,锁会根据实际情况进行升级。锁的升级过程就是将低级别的锁转换为高级别的锁,以应对竞争激烈、长时间持有锁的情况,从而保证线程的顺序执行和数据的一致性。锁升级的原则是在减少线程切换开销、提高吞吐量和保证线程安全之间找到一个平衡点,以最优的方式处理并发情况。

      三,什么是CAS

      CAS(Compare and Swap)是一种并发算法,用于实现多线程环境下的原子操作。它是一种乐观锁策略,通过比较内存中的值与期望值是否相等来判断数据是否被修改,从而进行原子操作。

      CAS 操作通常涉及三个参数:内存地址(或变量),期望值和新值。CAS 操作会先读取内存中的值与期望值进行比较,如果相等,则将新值写入内存中,并返回操作成功;如果不相等,则说明其他线程已经修改了内存的值,CAS 操作失败,需要重新尝试。

      CAS 操作是原子性的,因为它在执行期间不会被中断或打断。它可以提供非阻塞的原子性操作,避免了使用锁造成的线程阻塞和上下文切换的开销。相比传统的加锁操作,CAS 操作通常具有更高的并发性能。

      CAS 在并发编程中有广泛的应用,例如乐观锁、无锁数据结构和线程安全的计数器等。但需要注意的是,CAS 操作虽然能够解决一些并发问题,但在高并发环境下可能存在ABA问题(即在修改期间,数据经过了一系列变化又回到了原始状态),需要额外的手段来解决。

      四,synchronized示例代码

      以下是使用 Java 中的 `synchronized` 关键字实现同步的示例代码:

      1. 同步方法示例:

       

      public class SynchronizedExample {
          private int count = 0;
          public synchronized void increment() {
              count++;
          }
          public synchronized void decrement() {
              count--;
          }
      }

      image.gif

      在上面的示例中,`increment()` 和 `decrement()` 方法都被声明为 `synchronized`,这意味着一次只能有一个线程访问这些方法。当一个线程正在执行其中一个方法时,其他线程必须等待。

      2. 同步代码块示例:

      public class SynchronizedExample {
          private int count = 0;
          private Object lock = new Object();
          public void increment() {
              synchronized (lock) {
                  count++;
              }
          }
          public void decrement() {
              synchronized (lock) {
                  count--;
              }
          }
      }

      image.gif

      在上面的示例中,我们使用一个对象 `lock` 作为锁来创建同步代码块。在 `increment()` 和 `decrement()` 方法中,只有一个线程可以同时进入同步代码块,并且执行完同步代码块后会释放锁。

      需要注意的是,在使用 `synchronized` 时,应该选择合适的对象作为锁,以避免不必要的竞争。通常,我们可以使用类的某个成员变量或者专门为同步目的创建一个 `Object` 对象作为锁。

      以上示例代码演示了如何在 Java 中使用 `synchronized` 关键字进行同步。然而,Java 还提供了其他同步机制,如 `ReentrantLock`、`Semaphore` 等,可以根据具体的需求选择合适的同步方式。

      目录
      相关文章
      |
      人工智能 自然语言处理 数据库
      AI - RAG架构
      AI-RAG架构
      443 0
      |
      4月前
      |
      机器学习/深度学习 消息中间件 存储
      【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
      🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
      171 0
      |
      5月前
      |
      消息中间件 Java 开发者
      Java中实现异步通知的重试机制
      在分布式系统中,异步通知是服务间数据交换的重要方式。然而,网络波动或服务不稳定可能导致通知失败,因此设计一个可靠的重试机制至关重要。本文通过Java教程,基于Spring框架和RabbitMQ,详细讲解异步通知重试机制的实现。内容涵盖重试策略(如最大尝试次数、退避策略等)、环境搭建及代码示例,帮助开发者构建健壮的分布式系统。
      154 9
      |
      5月前
      |
      人工智能 Java 数据库
      飞算 JavaAI:革新电商订单系统 Spring Boot 微服务开发
      在电商订单系统开发中,传统方式耗时约30天,需应对复杂代码、调试与测试。飞算JavaAI作为一款AI代码生成工具,专注于简化Spring Boot微服务开发。它能根据业务需求自动生成RESTful API、数据库交互及事务管理代码,将开发时间缩短至1小时,效率提升80%。通过减少样板代码编写,提供规范且准确的代码,飞算JavaAI显著降低了开发成本,为软件开发带来革新动力。
      |
      4月前
      |
      Java 开发者 Spring
      Spring框架 - 深度揭秘Spring框架的基础架构与工作原理
      所以,当你进入这个Spring的世界,看似一片混乱,但细看之下,你会发现这里有个牢固的结构支撑,一切皆有可能。不论你要建设的是一座宏大的城堡,还是个小巧的花园,只要你的工具箱里有Spring,你就能轻松搞定。
      172 9
      |
      11月前
      |
      IDE Java API
      基于Spring Boot REST API设计指南
      【10月更文挑战第4天】 在现代的软件开发中,RESTful API已经成为了构建网络应用的标准之一。它通过HTTP协议提供了与资源交互的方式,使得不同的应用程序能够进行数据交互。Spring Boot作为一个功能强大的框架,它简化了配置和开发流程,成为了构建RESTful API的理想选择。本文将详细介绍如何在Spring Boot中设计和实现高质量的RESTful API,并提供一些最佳实践。
      186 1
      |
      5月前
      |
      存储 Java 定位技术
      SpringBoot整合高德地图完成天气预报功能
      本文介绍了如何在SpringBoot项目中整合高德地图API实现天气预报功能。从创建SpringBoot项目、配置依赖和申请高德地图API开始,详细讲解了实体类设计、服务层实现(调用高德地图API获取实时与预报天气数据)、控制器层接口开发以及定时任务的设置。通过示例代码,展示了如何获取并处理天气数据,最终提供实时天气与未来几天天气预报的接口。文章还提供了测试方法及运行步骤,帮助开发者快速上手并扩展功能。
      |
      7月前
      |
      XML Java 数据格式
      Spring容器的本质
      本文主要讨论Spring容器最核心的机制,用最少的代码讲清楚Spring容器的本质。
      |
      8月前
      |
      Java 测试技术 应用服务中间件
      Spring Boot 配置文件总结
      Spring Boot 提供全局配置文件 `application.properties` 和 `application.yml`,用于修改自动配置的默认值。前者使用键值对配置,后者使用缩进和冒号。不同环境(开发、测试、生产)可切换配置文件,通过 `spring.profiles.active` 指定。例如,开发环境端口为4790,测试环境为4791,生产环境为4792。配置示例展示了属性、List、Map定义及引用方法。
      208 14
      |
      8月前
      |
      人工智能 Java 程序员
      通义灵码AI编码助手和AI程序员背后的技术
      通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
      367 12