进入数据结构的世界

简介: 进入数据结构的世界

一、什么是数据结构

数据结构是计算机存储、组织数据的方式。(相互之间存在一种或多种特定关系的数据元素的集合)


二、什么是算法

算法就是一系列的计算步骤,用来吧输入数据转换成输出结果。(算法就是有良好的计算过程,把一个或一组的值输入,并产出一个或一组的值输出)


三、如何去学习数据结构和算法

现在的公司对学生的代码能力越来越高,数据结构和算法的题目越来越难。算法的能力在短期内是不能够快速提升的,需要进行算法训练的积累。校招的时候,笔试很难,为了能够找到工作,还需要对数据结构和算法早早的准备,多去训练算法能力。

数据结构和算法对于初学者来说很难。但 是,古话说的好,世上无难事,只怕有心人。不管数据结构和算法有多难,我们都要硬着头皮去学。我相信,只要多学多练,学习数据结构和算法就会越来越简单。


四、算法的时间复杂度和空间复杂度

时间和空间这两个维度能够衡量算法的好坏,


4.1 算法效率

算法在编写成可执行程序后,运行程序需要耗费空间资源和时间资源。因此,衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,这就是时间复杂度和空间复杂度。


时间复杂度主要是衡量算法的运行快慢,而空间复杂度主要是衡量一个算法运行时所需要的额外空间。(计算机发展的早期,计算机存储的容量很小,我们对空间复杂度很在乎。但是经过计算机行业的快速发展,计算机存储的容量已经达到了很高的地步。所以我们今天已经不需要特别在关注算法的空间复杂度)


4.2 大O的渐进表示法

大O符号(Big O notation):用于描述函数渐进行为的数学符号

大O的渐进表示法的推导方法:


1、用常数1取代运行时间中所以的加法常数。

2、在运行次数函数中,只保留最高阶项。

3、如果最高价项存在且不是1,则去除与这个项相乘的常数,得到的结果就是大O阶。


算法的时间复杂度存在最好、平均和最坏情况:


最好情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最坏情况:任意输入规模的最小运行次数(下界)


例如:在一个长度为N的数组中搜索一个数据x


最好情况:1次找到

平均情况:N/2次找到

最坏情况:N次找到


实际中,我们关注的都是算法的最坏情况。所以,数组中搜索数据的时间复杂度为O(N)


4.3 时间复杂度

时间复杂度的定义:

一个算法执行所消耗的时间,从理论上说,是不能够算出来得,只有把程序放在机器上跑,才能够知道消耗的时间。一个算法所花费的时间与其中语句的执行次数成正比,算法的基本操作的执行次数,就是算法的时间复杂度。

案例1:


找到基本语句与问题规模n的数学表达式,算出该算法的时间复杂度。

//计算++count语句执行的次数
#include <stdio.h>
int main()
{
    int n = 0;
    scanf("%d", &n);
    int count = 0;
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
            ++count;
    }
    for (int i = 0; i < 2 * n; i++)
    {
        ++count;
    }
    int m = 10;
    while (m--)
    {
        ++count;
    }
    printf("%d\n", count);
    return 0;
}

基本操作次数:

F(n)=n^2+2*n+10


n=10 F(n)=130

n=100 F(n)=10210

n=1000 F(n)=1002010

用大O的渐进表示法,时间复杂度为O(N^2)


n=10 F(n)=100

n=100 F(n)=10000

n=1000 F(n)=1000000

实际中我们计算时间复杂度时,并不一定计算精准的时间复杂度,而只需要大概执行次数,这里我们使用大O的渐进表示法。


通过上面我们可以发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

案例2:

计算Fun2的时间复杂度
void Fun2()
{
    int N;
    scanf("%d", &N);
    int count = 0;
    for (int i = 0; i < 2 * N; i++)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

Fun2的时间复杂度为:

F(N)=2*N+10

大O的渐进表示法:时间复杂度为O(N)

案例3:

//计算Fun3的时间复杂度
void Fun3()
{
    int N, M;
    scanf("%d%d", &N, &M);
    int count = 0;
    for (int i = 0; i < N; i++)
    {
        ++count;
    }
    for (int j = 0; j < M; j++)
    {
        ++count;
    }
    printf("%d\n", count);
}

Fun2的时间复杂度为:

F(N)=N+M

大O的渐进表示法:时间复杂度为O(N)

案例4:

//二分查找的思想
void Fun4()
{
    int m = 0;
    int arr[10] = { 1,2,4,6,8,11,55,66,77,88};
    int n;
    printf("请输入要查找的数:\n");
    scanf("%d", &n);
    int begin = 0;
    int end = 9;
    while (begin <= end)
    {
        int mid = begin + (end - begin)/2;
        if (arr[mid] < n)
            begin = mid + 1;
        else if (arr[mid] > n)
            end = mid - 1;
        else
        {
            printf("找到了\n");
            printf("%d", arr[mid]);
            m = 1;
            break;
    }
    }
    if(m==0)
    printf("没找到\n");
}

区间数据个数:

N

N/2

N/2/2

…………

N/2/2/2……/2=1

最坏的情况,查找区间缩放只剩一个值时,就是坏得,

假设查找x次,2^x=N,所以x=logN。

大O的渐进表示法:时间复杂度为O(logN).

案例5:

//斐波那契递归的复杂度
#include <stdio.h>
int Fun5(size_t n)
{
    if (n < 3)
        return 1;
    return Fun5(n - 2) + Fun5(n - 1);
}
int main()
{
    int n = 7;
    int sum=Fun5(n);
    printf("%d\n", sum);
    return 0;
}

打印结果:

递归展开图:

1次(2^ 0)

2次(2^ 1)

4次(2^ 2)

8次(2^ 3)

……

2^(N-1)次

通过函数递归图分析基本操作递归了2 ^N-1次,

大O的渐进表示法:时间复杂度为O (2 ^N)。

4.4 空间复杂度

空间复杂度的定义:

一个算法在运行过程中临时占用存储空间大小的量度。(空间复杂度算的是变量的个数)

注意:

函数运行时所需要的栈空间(存储函数、局部变量、一些寄存器信息等)在编译期间就已经确定好了,因此,空间复杂度主要就是函数在运行的时候申请的额外空间来确定的。

案例1:

//计算BubbleSort函数的空间复杂度
void BubbleSort(int* a, int n)
{
    assert(a);
    for (int end = n; end > 0; end--)
    {
        int exchange = 0;
        for (int i = 1; i < n; i++)
        {
            if (a[i - 1] > a[i])
            {
                Swap(&a[i - 1], &a[i]);
                exchange = 1;
            }
        }
        //不需要循环了
        if (exchange == 0)
            break;
    }
}

可以看出使用了常数个额外空间,所以空间复杂度为O(1)

案例2:

//看返回斐波那契数列的前n项,计算Fibonac的空间复杂度
int* Fibonac(int n)
{
    if (n == 0)
        return NULL;
    int* fibar = (int*)malloc(sizeof(int) * (n + 1));
    fibar[0] = 0;
    fibar[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        fibar[i] = fibar[i - 1] + fibar[i - 2];
   }
    return fibar[i];
}

动态开辟了n+1个空间,大O的渐进表示法为O(N);

4.5 常见复杂度对比

相关文章
|
6月前
|
存储 C++ 索引
c++数据结构
c++数据结构
52 3
|
3月前
|
消息中间件 缓存 调度
常见的八种数据结构
常见的数据结构包括数组、链表、队列、栈、树、堆、哈希表和图,每种数据结构都有其特点
64 3
|
3月前
|
存储 JavaScript 前端开发
复杂数据结构
【8月更文挑战第25天】
31 0
|
5月前
|
存储 算法 调度
|
6月前
|
存储 算法
【数据结构】什么是数据结构?
【数据结构】什么是数据结构?
55 0
|
6月前
|
算法 C++ 开发者
【C/C++ 数据结构 】 连通图的基本了解
【C/C++ 数据结构 】 连通图的基本了解
89 0
|
6月前
|
存储 算法 前端开发
了解数据结构
了解数据结构相关知识
|
6月前
|
存储 算法 索引
数据结构每日回顾
数据结构每日回顾
37 1
|
6月前
|
NoSQL 容器 消息中间件
数据结构 2.3.7
数据结构 2.3.7
|
11月前
数据结构 2.2 单循环链表
数据结构 2.2 单循环链表
55 0