运维工程师面试题总结-Zabbix分布式拓展Prometheus监控&消息队列RabbitMQ与微服务Dubbo、 Maven、Nexus18-19

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: 个人学习

1.监控能做什么

硬件、软件、意外故障、关键事件、监控系统、趋势数据、报警灯

2.自动发现

通过制定需要扫描的IP范围及时间间隔,使用规定的检查方法(端口/agent/system.uname)进行自动发现,需要注意,自动发现含有VIP的主机,可能会产生重复添加,按需处理

3.Prometheus的局限

Prometheus是基于Metric的监控,不适用于日志(Logs)、事件(Event)、调用链(Tracing)。

Prometheus默认是Pull模型,合理规划你的网络,尽量不要转发。

对于集群化和水平扩展,官方和社区都没有银弹,需要合理选择Federate、Cortex、Thanos等方案。

监控系统一般情况下可用性大于一致性,容忍部分副本数据丢失,保证查询请求成功。这个后面说Thanos去重的时候会提到。

Prometheus不一定保证数据准确,这里的不准确一是指rate、histogram_quantile等函数会做统计和推断,产生一些反直觉的结果,这个后面会详细展开。二来查询范围过长要做降采样,势必会造成数据精度丢失,不过这是时序数据的特点,也是不同于日志系统的地方。

1.为什么使用消息队列

异步:批量数据异步处理(批量上传文件)

削峰:高负载任务负载均衡(电商秒杀抢购)

解耦:串行任务并行化(退货流程解耦)

广播:基于Pub/Sub实现一对多通信蓄流压测(线上有些链路不好压测,可以通过堆积一定量消息再放开来压测)

2.RabbitMQ集群部署

普通模式:创建好RabbitMQ集群之后的默认模式。

镜像模式:把需要的队列做成镜像队列。

3.如何查看RabbitMQ的集群状态

rabbitmqctl      cluster_status

4.ZooKeeper使用场景

ZooKeeper是一个分布式服务框架,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:命名服务、状态同步、配置中心、集群管理等。

5.kafka优势

通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。

高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。

支持通过Kafka服务器分区消息。

支持Hadoop并行数据加载

6.kafka存在几种角色

Broker:Kafka集群包含一个或多个服务器,这种服务器被称为broker

如果想上手操作的同学们可以通过阿里云ecs服务器免费试用参与或低价购买专属于自己的服务器入口如下

入口一:新老同学免费试用

入口二:新人服务器特惠礼包

入口三:大学生版低价特惠服务器

入口四:云服务器首购特惠&免费试用

入口五:云服务器特惠1.5折起

入口六:低价特惠建站

申领云栖大会免费门票入口如下

入口七:云栖大会免费领票

目录
相关文章
|
3月前
|
消息中间件 存储 Java
RabbitMQ 在微服务架构中的高级应用
【8月更文第28天】在微服务架构中,服务之间需要通过轻量级的通信机制进行交互。其中一种流行的解决方案是使用消息队列,如 RabbitMQ,来实现异步通信和解耦。本文将探讨如何利用 RabbitMQ 作为服务间通信的核心组件,并构建高效的事件驱动架构。
120 2
|
4月前
|
存储 缓存 NoSQL
Redis常见面试题(二):redis分布式锁、redisson、主从一致性、Redlock红锁;Redis集群、主从复制,哨兵模式,分片集群;Redis为什么这么快,I/O多路复用模型
redis分布式锁、redisson、可重入、主从一致性、WatchDog、Redlock红锁、zookeeper;Redis集群、主从复制,全量同步、增量同步;哨兵,分片集群,Redis为什么这么快,I/O多路复用模型——用户空间和内核空间、阻塞IO、非阻塞IO、IO多路复用,Redis网络模型
Redis常见面试题(二):redis分布式锁、redisson、主从一致性、Redlock红锁;Redis集群、主从复制,哨兵模式,分片集群;Redis为什么这么快,I/O多路复用模型
|
1月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现
消息队列系统中的确认机制在分布式系统中如何实现
|
1月前
|
消息中间件 存储 监控
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
|
20天前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
3月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
3月前
|
消息中间件 开发框架 Go
【揭秘】如何让Kratos微服务与NATS消息队列完美融合?看完这篇你就懂了!
【8月更文挑战第22天】Kratos是基于Go语言的微服务框架,提供全面工具助力开发者构建高性能应用。NATS作为轻量级消息队列服务,适用于分布式系统消息传递。本文详细介绍如何在Kratos项目中集成NATS,包括创建项目、安装NATS客户端、配置连接、初始化NATS、发送与接收消息等步骤,助您轻松实现高效微服务架构。
62 1
|
3月前
|
消息中间件 存储 Java
分布式消息队列基础知识
本文概述了分布式消息队列的基本概念、组成、模式、基础与高级功能,以及它在业务开发中的应用和核心技术,为深入学习RocketMQ等消息队列组件提供基础知识。
分布式消息队列基础知识
|
4月前
|
canal 缓存 NoSQL
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;先删除缓存还是先修改数据库,双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
|
3月前
|
运维 Cloud Native 容灾
核心系统转型问题之云原生分布式核心运维成本如何降低
核心系统转型问题之云原生分布式核心运维成本如何降低

推荐镜像

更多