Go 语言 context 最佳实践

简介: Go 语言 context 最佳实践

介绍

Go 语言在 v1.7 引入 context 包,关于它的使用方式,我们在之前的文章中已经介绍过,感兴趣的读者朋友们可以翻阅。

本文我们介绍 context 包的最佳实践,包括传值、超时和取消。

传值

我们可以使用 context 包的 func WithValue() 函数传递数据。

func main() {
 ctx := context.WithValue(context.Background(), "ctxKey1", "ctxVal")
 go func(ctx context.Context) {
  // 读取 ctx 的 value
  data, ok := ctx.Value("ctxKey1").(string)
  if ok {
   fmt.Printf("sub goroutine get value from parent goroutine, val=%s\n", data)
  }
 }(ctx)
 time.Sleep(1 * time.Second)
}

输出结果:

sub goroutine get value from parent goroutine, val=ctxVal

阅读上面这段代码,我们使用 func WithValue() 函数创建一个 context,并且传递 key 为 ctxKey1 的数据。

我们知道 context 是并发安全的,所以我们每次使用 context 传递一个新数据,都需要使用 func WithValue() 函数创建一个新的 context,包装一下 parent context

传递多个数据

...
ctx := context.WithValue(context.Background(), "ctxKey1", "ctxVal")
ctx = context.WithValue(ctx, "ctxKey2", "ctxVal2")
ctx = context.WithValue(ctx, "ctxKey3", "ctxVal3")
...

阅读上面这段代码,我们可以发现,如果使用 context 传递多个数据,就需要使用 func WithValue() 创建多个 context

虽然通过使用 func WithValue() 创建多个 context 的方式,可以实现我们的需求,但是,它使代码不再优雅,并且性能也会降低。

怎么解决?

针对该场景,我们可以参考 gRPC 框架的 metadata 包的代码。定义一个 map,通过传递 map 类型的值,实现需要使用 context 传递多个数据的需求。

func main() {
 ctxVal := make(map[string]string)
 ctxVal["k1"] = "v1"
 ctxVal["k2"] = "v2"
 ctx := context.WithValue(context.Background(), "ctxKey1", ctxVal)
 go func(ctx context.Context) {
  // 读取 ctx 的 value
  data, ok := ctx.Value("ctxKey1").(map[string]string)
  if ok {
   fmt.Printf("sub goroutine get value from parent goroutine, val=%+v\n", data)
  }
 }(ctx)
 time.Sleep(1 * time.Second)
}

输出结果:

sub goroutine get value from parent goroutine, val=map[k1:v1 k2:v2]

修改传递数据

使用 context 包的 func WithValue() 函数传递的数据,不建议在传输过程中进行修改,如果遇到在传输过程中需要修改数据的场景,我们可以使用 COW 的方式处理,从而避免 data race。

func main() {
 ctxVal := make(map[string]string)
 ctxVal["k1"] = "v1"
 ctxVal["k2"] = "v2"
 ctx := context.WithValue(context.Background(), "ctxKey1", ctxVal)
 go func(ctx context.Context) {
  // 读取 ctx 的 value
  data, ok := ctx.Value("ctxKey1").(map[string]string)
  if ok {
   ctxVal := make(map[string]string)
   for k, v := range data {
    ctxVal[k] = v
   }
   ctxVal["k3"] = "v3"
   ctx = context.WithValue(ctx, "ctxKey1", ctxVal)
   data, ok := ctx.Value("ctxKey1").(map[string]string)
   if !ok {
    fmt.Printf("sub goroutine get value from parent goroutine, val=%+v\n", nil)
   }
   fmt.Printf("sub goroutine get value from parent goroutine, val=%+v\n", data)
  }
 }(ctx)
 time.Sleep(1 * time.Second)
}

输出结果:

sub goroutine get value from parent goroutine, val=map[k1:v1 k2:v2 k3:v3]

阅读上面这段代码,我们通过 COW(copy on write) 方式修改 context 传递的数据。

03

超时

我们可以使用 context 包的 func WithTimeout() 函数设置超时时间,从而避免请求阻塞。

func main() {
 ctx, cancel := context.WithTimeout(context.Background(), 1*time.Millisecond)
 defer cancel()
 select {
 case <-time.After(1 * time.Second):
  fmt.Println("overslept")
 case <-ctx.Done():
  fmt.Println(ctx.Err())
 }

输出结果:

context deadline exceeded

阅读上面这段代码,我们使用 func WithTimeout() 函数创建一个 1ms 取消的 context,使用 select ... case ... 读取 ctx.Done(),从而取消监听该 contextgoroutine

04

取消

我们可以使用 context 包的 func WithCancel() 函数取消操作,从而避免 goroutine 泄露。

func main() {
 gen := func() <-chan int {
  dst := make(chan int)
  go func() {
   var n int
   for {
    dst <- n
    n++
   }
  }()
  return dst
 }
 for n := range gen() {
  fmt.Println(n)
  if n == 5 {
   break
  }
 }
 time.Sleep(1 * time.Second)
}

输出结果:

0
1
2
3
4
5

阅读上面这段代码,我们创建一个 gen() 函数,启动一个 goroutine 生成整数,循环调用 gen() 函数输出生成的整数,当整数值为 5 时,停止循环,从输出结果看,没有发现问题。

但是,实际上该段代码会导致 goroutine 泄露,因为 gen() 函数一直在无限循环。

怎么解决?

我们可以使用 func WithCancel() 函数创建一个 context,作为 gen() 函数的第一个参数,当停止循环时,同时调用 contextCancelFunc 取消 gen() 函数启动的 goroutine

func main() {
 gen := func(ctx context.Context) <-chan int {
  dst := make(chan int)
  go func() {
   var n int
   for {
    dst <- n
    n++
   }
  }()
  return dst
 }
 ctx, cancel := context.WithCancel(context.Background())
 defer cancel()
 for n := range gen(ctx) {
  fmt.Println(n)
  if n == 5 {
   cancel()
   break
  }
 }
 time.Sleep(1 * time.Second)
}

输出结果:

0
1
2
3
4
5

05

总结

本文我们介绍 context 包的传值、超时和取消的使用方式,context 包的这三个功能,我们不仅可以用于跨 goroutine 的操作,而且还可以用于跨服务的操作。

推荐阅读:

参考资料:

  1. https://go.dev/talks/2014/gotham-context.slide#29
  2. https://go.dev/blog/context


目录
打赏
0
0
0
0
8
分享
相关文章
Go语言网络编程:使用 net/http 构建 RESTful API
本章介绍如何使用 Go 语言的 `net/http` 标准库构建 RESTful API。内容涵盖 RESTful API 的基本概念及规范,包括 GET、POST、PUT 和 DELETE 方法的实现。通过定义用户数据结构和模拟数据库,逐步实现获取用户列表、创建用户、更新用户、删除用户的 HTTP 路由处理函数。同时提供辅助函数用于路径参数解析,并展示如何设置路由器启动服务。最后通过 curl 或 Postman 测试接口功能。章节总结了路由分发、JSON 编解码、方法区分、并发安全管理和路径参数解析等关键点,为更复杂需求推荐第三方框架如 Gin、Echo 和 Chi。
初探Go语言RPC编程手法
总的来说,Go语言的RPC编程是一种强大的工具,让分布式计算变得简单如同本地计算。如果你还没有试过,不妨挑战一下这个新的编程领域,你可能会发现新的世界。
63 10
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
80 3
阿里双十一背后的Go语言实践:百万QPS网关的设计与实现
解析阿里核心网关如何利用Go协程池、RingBuffer、零拷贝技术支撑亿级流量。 重点分享: ① 如何用gRPC拦截器实现熔断限流; ② Sync.Map在高并发读写中的取舍。
182 1
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
78 0
eino — 基于go语言的大模型应用开发框架(二)
本文介绍了如何使用Eino框架实现一个基本的LLM(大语言模型)应用。Eino中的`ChatModel`接口提供了与不同大模型服务(如OpenAI、Ollama等)交互的统一方式,支持生成完整响应、流式响应和绑定工具等功能。`Generate`方法用于生成完整的模型响应,`Stream`方法以流式方式返回结果,`BindTools`方法为模型绑定工具。此外,还介绍了通过`Option`模式配置模型参数及模板功能,支持基于前端和用户自定义的角色及Prompt。目前主要聚焦于`ChatModel`的`Generate`方法,后续将继续深入学习。
726 7
eino — 基于go语言的大模型应用开发框架(一)
Eino 是一个受开源社区优秀LLM应用开发框架(如LangChain和LlamaIndex)启发的Go语言框架,强调简洁性、可扩展性和可靠性。它提供了易于复用的组件、强大的编排框架、简洁明了的API、最佳实践集合及实用的DevOps工具,支持快速构建和部署LLM应用。Eino不仅兼容多种模型库(如OpenAI、Ollama、Ark),还提供详细的官方文档和活跃的社区支持,便于开发者上手使用。
1097 8
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问