SpringCloud 高级篇 – 微服务保护
1.初识Sentinel
1.1.雪崩问题及解决方案
1.1.1.雪崩问题
微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。
如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。
但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:
服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。
那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:
1.1.2.超时处理
解决雪崩问题的常见方式有四种:
•超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
1.1.3.仓壁模式
方案2:仓壁模式
仓壁模式来源于船舱的设计:
船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。
于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
1.1.4.断路器
断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
断路器会统计访问某个服务的请求数量,异常比例:
当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:
1.1.5.限流
流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。
1.1.6.总结
什么是雪崩问题?
微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。
可以认为:
限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。
超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。
1.2.服务保护技术对比
在SpringCloud当中支持多种服务保护技术:
早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:
Sentinel | Hystrix | |
隔离策略 | 信号量隔离 | 线程池隔离/信号量隔离 |
熔断降级策略 | 基于慢调用比例或异常比例 | 基于失败比率 |
实时指标实现 | 滑动窗口 | 滑动窗口(基于 RxJava) |
规则配置 | 支持多种数据源 | 支持多种数据源 |
扩展性 | 多个扩展点 | 插件的形式 |
基于注解的支持 | 支持 | 支持 |
限流 | 基于 QPS,支持基于调用关系的限流 | 有限的支持 |
流量整形 | 支持慢启动、匀速排队模式 | 不支持 |
系统自适应保护 | 支持 | 不支持 |
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix
1.3.Sentinel介绍和安装
1.3.1.初识Sentinel
Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html
Sentinel 具有以下特征:
•丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
•完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
•广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
•完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
1.3.2.安装Sentinel
1)下载
sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。
课前资料也提供了下载好的jar包:
2)运行
将jar包放到任意非中文目录,执行命令:
java -jar sentinel-dashboard-1.8.1.jar
如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:
配置项 | 默认值 | 说明 |
server.port | 8080 | 服务端口 |
sentinel.dashboard.auth.username | sentinel | 默认用户名 |
sentinel.dashboard.auth.password | sentinel | 默认密码 |
例如,修改端口:
java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar
3)访问
访问http://localhost:8080页面,就可以看到sentinel的控制台了:
需要输入账号和密码,默认都是:sentine
登录后,发现一片空白,什么都没有:
这是因为我们还没有与微服务整合。
1.4.微服务整合Sentinel
我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:
1)引入sentinel依赖
<!--sentinel--> <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId> </dependency>
2)配置控制台
修改application.yaml文件,添加下面内容:
server: port: 8088 spring: cloud: sentinel: transport: dashboard: localhost:8080
3)访问order-service的任意端点
打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。
然后再访问sentinel的控制台,查看效果:
2.流量控制
雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。
2.1.簇点链路
当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源。
默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}
流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
- 流控:流量控制
- 降级:降级熔断
- 热点:热点参数限流,是限流的一种
- 授权:请求的权限控制
2.1.快速入门
2.1.1.示例
点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。
表单中可以填写限流规则,如下:
其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。
2.1.2.练习:
需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。
1)首先在sentinel控制台添加限流规则
2)利用jmeter测试如果没有用过jmeter,可以参考课前资料提供的文档《Jmeter快速入门.md》
课前资料提供了编写好的Jmeter测试样例:
打开jmeter,导入课前资料提供的测试样例:
选择:
20个用户,2秒内运行完,QPS是10,超过了5.
选中流控入门,QPS<5
右键运行:
注意,不要点击菜单中的执行按钮来运行。
结果:
可以看到,成功的请求每次只有5个
2.2.流控模式
在添加限流规则时,点击高级选项,可以选择三种流控模式:
- 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
- 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
- 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
快速入门测试的就是直接模式。
2.2.1.关联模式
关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
配置规则:
语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。
使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。
需求说明:
在OrderController新建两个端点:/order/query和/order/update,无需实现业务
配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流
1)定义/order/query端点,模拟订单查询
@GetMapping("/query") public String queryOrder() { return "查询订单成功"; }
2)定义/order/update端点,模拟订单更新
@GetMapping("/update") public String updateOrder() { return "更新订单成功"; }
重启服务,查看sentinel控制台的簇点链路:
3)配置流控规则
对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:
在表单中填写流控规则:
4)在Jmeter测试
选择《流控模式-关联》:
可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5
查看http请求:
请求的目标是/order/update,这样这个断点就会触发阈值。
但限流的目标是/order/query,我们在浏览器访问,可以发现:
确实被限流了。
5)总结
满足下面条件可以使用关联模式:
- 两个有竞争关系的资源
- 一个优先级较高,一个优先级较低
2.2.2.链路模
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
配置示例:
例如有两条请求链路:
/test1 --> /common
/test2 --> /common
如果只希望统计从/test2进入到/common的请求,则可以这样配置:
实战案例需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。
步骤:
在OrderService中添加一个queryGoods方法,不用实现业务
在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2
实现:
1)添加查询商品方法
在order-service服务中,给OrderService类添加一个queryGoods方法:
public void queryGoods(){ System.err.println("查询商品"); }
2)查询订单时,查询商品
在order-service的OrderController中,修改/order/query端点的业务逻辑:
@GetMapping("/query") public String queryOrder() { // 查询商品 orderService.queryGoods(); // 查询订单 System.out.println("查询订单"); return "查询订单成功"; }
3)新增订单,查询商品
在order-service的OrderController中,修改/order/save端点,模拟新增订单:
@GetMapping("/save") public String saveOrder() { // 查询商品 orderService.queryGoods(); // 查询订单 System.err.println("新增订单"); return "新增订单成功"; }
4)给查询商品添加资源标记
默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。
给OrderService的queryGoods方法添加@SentinelResource注解:
@SentinelResource("goods") public void queryGoods(){ System.err.println("查询商品"); }
链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。
我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:
spring: cloud: sentinel: web-context-unify: false # 关闭context整合
重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:
5)添加流控规
点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:
只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。
6)Jmeter测试
选择《流控模式-链路》:
可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2
一个http请求是访问/order/save:
运行的结果:
完全不受影响。
另一个是访问/order/query:
运行结果:
每次只有2个通过。
2.2.3.总结
流控模式有哪些?
- 直接:对当前资源限流
- 关联:高优先级资源触发阈值,对低优先级资源限流。
- 链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流
2.3.流控效果
在流控的高级选项中,还有一个流控效果选项:
流控效果是指请求达到流控阈值时应该采取的措施,包括三种:
快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
2.3.1.warm up
阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。
warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold(最大阈值) / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.
例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.
案例
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒
1)配置流控规则:
2)Jmeter测试
选择《流控效果,warm up》:
QPS为10.
刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:
随着时间推移,成功比例越来越高:
到Sentinel控制台查看实时监控:
一段时间后:
2.3.2.排队等待
当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。
而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
工作原理
例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。那什么叫做预期等待时长呢?
比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:
- 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
- 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms
现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:
如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:
平滑的QPS曲线,对于服务器来说是更友好的。
案例
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s
1)添加流控规则
2)Jmeter测试
选择《流控效果,队列》:
QPS为15,已经超过了我们设定的10。
如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。
但是我们看看队列模式的运行结果:
全部都通过了。
再去sentinel查看实时监控的QPS曲线:
QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。当队列满了以后,才会有部分请求失败:
2.3.3.总结
流控效果有哪些?
快速失败:QPS超过阈值时,拒绝新的请求
warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。
排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝
2.4.热点参数限流
之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是**分别统计参数值相同的请求**,判断是否超过QPS阈值。
2.4.1.全局参数限流
例如,一个根据id查询商品的接口:
访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:
当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。
配置示例:
代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5
2.4.2.热点参数限流
刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.
而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:
- 如果参数值是100,则每1秒允许的QPS为10
- 如果参数值是101,则每1秒允许的QPS为15
2.4.4.案例
案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:84
默认的热点参数规则是每1秒请求量不超过2
给102这个参数设置例外:每1秒请求量不超过4
给103这个参数设置例外:每1秒请求量不超过10
注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源
1)标记资源
给order-service中的OrderController中的/order/{orderId}资源添加注解:
2)热点参数限流规则
访问该接口,可以看到我们标记的hot资源出现了:
这里不要点击hot后面的按钮,页面有BUG
点击左侧菜单中热点规则菜单:
点击新增,填写表单:
3)Jmeter测试
选择《热点参数限流 QPS1》:
这里发起请求的QPS为5.
包含3个http请求:
普通参数,QPS阈值为2
运行结果:
例外项,QPS阈值为4
运行结果:
例外项,QPS阈值为10
运行结果:
3.隔离和降级
限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。
而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。
线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。
熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。
可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。
而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。
3.1.FeignClient整合Sentinel
SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。
3.1.1.修改配置,开启sentinel功能
修改OrderService的application.yml文件,开启Feign的Sentinel功能:
feign: sentinel: enabled: true # 开启feign对sentinel的支持
3.1.2.编写失败降级逻辑
业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。
给FeignClient编写失败后的降级逻辑
①方式一:FallbackClass,无法对远程调用的异常做处理
②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
这里我们演示方式二的失败降级处理。
步骤一:在feing-api项目中定义类,实现FallbackFactory:
代码:
@Slf4j public class UserClientFallbackFactory implements FallbackFactory<UserClient> { @Override public UserClient create(Throwable throwable) { return new UserClient() { @Override public User findById(Long id) { log.error("查询用户异常", throwable); return new User(); } }; } }
步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:
@Bean public UserClientFallbackFactory userClientFallbackFactory(){ return new UserClientFallbackFactory(); }
步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class) public interface UserClient @GetMapping("/user/{id}") User findById(@PathVariable("id") Long id); }
重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:
3.1.3.总结
Sentinel支持的雪崩解决方案:
线程隔离(仓壁模式)
降级熔断
Feign整合Sentinel的步骤:
在application.yml中配置:feign.sentienl.enable=true
给FeignClient编写FallbackFactory并注册为Bean
将FallbackFactory配置到FeignClient