JUC第十三讲:JUC锁: ReentrantLock详解

简介: JUC第十三讲:JUC锁: ReentrantLock详解

1、带着BAT大厂的面试问题去理解

请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。

  • 什么是可重入,什么是可重入锁? 它用来解决什么问题? 一定程度避免死锁
  • ReentrantLock的核心是AQS,那么它怎么来实现的,继承吗? 说说其类内部结构关系。独占模式
  • ReentrantLock是如何实现公平锁的?
  • ReentrantLock是如何实现非公平锁的?
  • ReentrantLock默认实现的是公平还是非公平锁? 非公平
  • 使用ReentrantLock实现公平和非公平锁的示例?
  • ReentrantLock和Synchronized的对比?

2、ReentrantLock源码分析

2.1、类的继承关系

ReentrantLock实现了Lock接口,Lock接口中定义了lock与unlock相关操作,并且还存在newCondition方法,表示生成一个条件。

public class ReentrantLock implements Lock, java.io.Serializable

2.2、类的内部类

ReentrantLock总共有三个内部类,并且三个内部类是紧密相关的,下面先看三个类的关系。

说明:ReentrantLock类内部总共存在Sync、NonfairSync、FairSync三个类,NonfairSync与FairSync类继承自Sync类,Sync类继承自 AbstractQueuedSynchronizer 抽象类。下面逐个进行分析。

  • Sync类

Sync类的源码如下:

abstract static class Sync extends AbstractQueuedSynchronizer {
    // 序列号
    private static final long serialVersionUID = -5179523762034025860L;
    // 获取锁
    abstract void lock();
    // 非公平方式获取
    final boolean nonfairTryAcquire(int acquires) {
        // 当前线程
        final Thread current = Thread.currentThread();
        // 获取状态
        int c = getState();
        // 表示没有线程正在竞争该锁
        if (c == 0) {
            // 比较并设置状态成功,状态0表示锁没有被占用
            if (compareAndSetState(0, acquires)) {
                // 设置当前线程独占
                setExclusiveOwnerThread(current); 
                return true; // 成功
            }
        }
        // 当前线程拥有该锁
        else if (current == getExclusiveOwnerThread()) {
            // 增加重入次数
            int nextc = c + acquires; 
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            // 设置状态
            setState(nextc); 
            // 成功
            return true; 
        }
        // 失败
        return false;
    }
    // 实现AQS提供的拓展点
    // 试图在共享模式下获取对象状态,此方法应该查询是否允许它在共享模式下获取对象状态,如果允许,则获取它
    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;
        // 当前线程不为独占线程
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException(); // 抛出异常
        // 释放标识
        boolean free = false; 
        if (c == 0) {
            free = true;
            // 已经释放,清空独占
            setExclusiveOwnerThread(null); 
        }
        // 设置标识
        setState(c); 
        return free; 
    }
    // 判断资源是否被当前线程占有
    protected final boolean isHeldExclusively() {
        // While we must in general read state before owner,
        // we don't need to do so to check if current thread is owner
        return getExclusiveOwnerThread() == Thread.currentThread();
    }
    // 新生一个条件
    final ConditionObject newCondition() {
        return new ConditionObject();
    }
    // Methods relayed from outer class
    // 返回资源的占用线程
    final Thread getOwner() {
        return getState() == 0 ? null : getExclusiveOwnerThread();
    }
    // 返回状态
    final int getHoldCount() {
        return isHeldExclusively() ? getState() : 0;
    }
    // 资源是否被占用
    final boolean isLocked() {
        return getState() != 0;
    }
    /**
     * Reconstitutes the instance from a stream (that is, deserializes it).
     */
    // 自定义反序列化逻辑
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        setState(0); // reset to unlocked state
    }
}

Sync类存在如下方法和作用如下。

  • NonfairSync类

NonfairSync类继承了Sync类,表示采用非公平策略获取锁,其实现了Sync类中抽象的lock方法,源码如下:

// 非公平锁
static final class NonfairSync extends Sync {
    // 版本号
    private static final long serialVersionUID = 7316153563782823691L;
    // 获得锁
    final void lock() {
        // 比较并设置状态成功,状态0表示锁没有被占用
        if (compareAndSetState(0, 1))
            // 把当前线程设置独占了锁
            setExclusiveOwnerThread(Thread.currentThread());
        else // 锁已经被占用,或者set失败
            // 以独占模式获取对象,忽略中断
            acquire(1);
    }
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
}

说明:从lock方法的源码可知,每一次都尝试获取锁,而并不会按照公平等待的原则进行等待,让等待时间最久的线程获得锁。

  • FairSync类

FairSync类也继承了Sync类,表示采用公平策略获取锁,其实现了Sync类中的抽象lock方法,源码如下:

// 公平锁
static final class FairSync extends Sync {
    // 版本序列化
    private static final long serialVersionUID = -3000897897090466540L;
    final void lock() {
        // 以独占模式获取对象,忽略中断
        acquire(1);
    }
    /**
     * Fair version of tryAcquire.  Don't grant access unless
     * recursive call or no waiters or is first.
     */
    // 尝试公平获取锁  AQS抽象类提供的拓展点
    protected final boolean tryAcquire(int acquires) {
        // 获取当前线程
        final Thread current = Thread.currentThread();
        // 获取状态
        int c = getState();
        if (c == 0) { // 状态为0
            // 不存在已经等待更久的线程 并且比较并且设置状态成功
            if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) {
                // 设置当前线程独占
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 状态不为0,即资源已经被线程占据
        else if (current == getExclusiveOwnerThread()) {
            // 下一个状态
            int nextc = c + acquires;
            if (nextc < 0) // 超过了int的表示范围
                throw new Error("Maximum lock count exceeded");
            // 设置状态
            setState(nextc);
            return true;
        }
        return false;
    }
}

说明:跟踪lock方法的源码可知,当资源空闲时,它总是会先判断sync队列(AbstractQueuedSynchronizer中的数据结构)是否有等待时间更长的线程,如果存在,则将该线程加入到等待队列的尾部,实现了公平获取原则。其中,FairSync类的lock的方法调用如下,只给出了主要的方法。

说明:可以看出只要资源被其他线程占用,该线程就会添加到sync queue中的尾部,而不会先尝试获取资源。这也是和Nonfair最大的区别,Nonfair每一次都会尝试去获取资源,如果此时该资源恰好被释放,则会被当前线程获取,这就造成了不公平的现象,当获取不成功,再加入队列尾部。

2.3、类的属性

ReentrantLock类的sync非常重要,对 ReentrantLock 类的操作大部分都直接转化为对Sync和 AbstractQueuedSynchronizer 类的操作。

public class ReentrantLock implements Lock, java.io.Serializable {
    // 序列号
    private static final long serialVersionUID = 7373984872572414699L;    
    // 同步队列
    private final Sync sync;
}

2.4、类的构造函数

  • ReentrantLock() 型构造函数

默认是采用的非公平策略获取锁

public ReentrantLock() {
    // 默认非公平策略
    sync = new NonfairSync();
}
  • ReentrantLock(boolean) 型构造函数

可以传递参数确定采用公平策略或者是非公平策略,参数为true表示公平策略,否则,采用非公平策略:

public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

2.5、核心函数分析

通过分析ReentrantLock的源码,可知对其操作都转化为对Sync对象的操作,由于Sync继承了AQS,所以基本上都可以转化为对AQS的操作。如将ReentrantLock的lock函数转化为对Sync的lock函数的调用,而具体会根据采用的策略(如公平策略或者非公平策略)的不同而调用到Sync的不同子类。

所以可知,在ReentrantLock的背后,是AQS对其服务提供了支持,由于之前我们分析AQS的核心源码,遂不再累赘。下面还是通过例子来更进一步分析源码。

3、示例分析

3.1、公平锁

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
class MyThread extends Thread {
    private Lock lock;
    public MyThread(String name, Lock lock) {
        super(name);
        this.lock = lock;
    }
    public void run () {
        lock.lock();
        try {
            System.out.println(Thread.currentThread() + " running");
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        } finally {
            lock.unlock();
        }
    }
}
public class AbstractQueuedSynchronizerDemo {
    public static void main(String[] args) throws InterruptedException {
        Lock lock = new ReentrantLock(true);
        MyThread t1 = new MyThread("t1", lock);        
        MyThread t2 = new MyThread("t2", lock);
        MyThread t3 = new MyThread("t3", lock);
        t1.start();
        t2.start();    
        t3.start();
    }
}

运行结果(某一次):

Thread[t1,5,main] running
Thread[t2,5,main] running
Thread[t3,5,main] running

说明: 该示例使用的是公平策略,由结果可知,可能会存在如下一种时序。

说明: 首先,t1线程的lock操作 -> t2线程的lock操作 -> t3线程的lock操作 -> t1线程的unlock操作 -> t2线程的unlock操作 -> t3线程的unlock操作。根据这个时序图来进一步分析源码的工作流程。

  • t1线程执行lock.lock,下图给出了方法调用中的主要方法。

说明: 由调用流程可知,t1线程成功获取了资源,可以继续执行。

  • t2线程执行 lock.lock,下图给出了方法调用中的主要方法。

说明: 由上图可知,最后的结果是t2线程会被禁止,因为调用了LockSupport.park。

  • t3线程执行lock.lock,下图给出了方法调用中的主要方法。

说明:由上图可知,最后的结果是t3线程会被禁止,因为调用了LockSupport.park。

  • t1线程调用了lock.unlock,下图给出了方法调用中的主要方法。

说明:如上图所示,最后,head的状态会变为0,t2线程会被unpark,即t2线程可以继续运行。此时t3线程还是被禁止。

  • t2获得cpu资源,继续运行,由于t2之前被park了,现在需要恢复之前的状态,下图给出了方法调用中的主要方法。

说明:在setHead函数中会将head设置为之前head的下一个结点,并且将pre域与thread域都设置为null,在acquireQueued返回之前,sync queue就只有两个结点了。

  • t2执行lock.unlock,下图给出了方法调用中的主要方法。

说明: 由上图可知,最终unpark t3线程,让t3线程可以继续运行。

  • t3线程获取cpu资源,恢复之前的状态,继续运行。

说明: 最终达到的状态是sync queue中只剩下了一个结点,并且该节点除了状态为0外,其余均为null。

  • t3执行lock.unlock,下图给出了方法调用中的主要方法。

说明: 最后的状态和之前的状态是一样的,队列中有一个空节点,头节点为尾节点均指向它。

使用公平策略和Condition的情况可以参考上一篇关于AQS的源码示例分析部分,不再累赘。

4、参考文章

相关文章
|
3月前
|
安全 Java
JUC锁: ReentrantReadWriteLock详解
`ReentrantReadWriteLock` 主要用于实现高性能的并发读取,而在写操作相对较少的场景中表现尤为突出。它保证了数据的一致性和线程安全,在合适的场合合理使用 `ReentrantReadWriteLock`,可以实现更加细粒度的控制,并显著提升应用性能。然而,需要注意它的复杂度较一般的互斥锁高,因此在选择使用时要仔细考虑其适用场景。
40 1
|
4月前
|
安全 Java
Java并发编程实战:使用synchronized和ReentrantLock实现线程安全
【8月更文挑战第31天】在Java并发编程中,保证线程安全是至关重要的。本文将通过对比synchronized和ReentrantLock两种锁机制,深入探讨它们在实现线程安全方面的优缺点,并通过代码示例展示如何使用这两种锁来保护共享资源。
|
6月前
|
安全 Java
深入探索Java并发库(JUC)中的ReentrantReadWriteLock
深入探索Java并发库(JUC)中的ReentrantReadWriteLock
|
7月前
|
Java
ReentrantLock(可重入锁)源码解读与使用
ReentrantLock(可重入锁)源码解读与使用
|
7月前
|
安全 Java 程序员
Java多线程基础-17:简单介绍一下JUC中的 ReentrantLock
ReentrantLock是Java并发包中的可重入互斥锁,与`synchronized`类似但更灵活。
61 0
|
缓存 数据处理
JUC第十四讲:JUC锁: ReentrantReadWriteLock详解
JUC第十四讲:JUC锁: ReentrantReadWriteLock详解
|
安全 Java
JUC第十一讲:JUC锁LockSupport详解
JUC第十一讲:JUC锁LockSupport详解
139 0
JUC第二十八讲:JUC工具类: Semaphore详解
JUC第二十八讲:JUC工具类: Semaphore详解
|
算法 调度
JUC基础(三)—— Lock锁 及 AQS(1)
JUC基础(三)—— Lock锁 及 AQS
134 0
|
Java
JUC基础(三)—— Lock锁 及 AQS(2)
JUC基础(三)—— Lock锁 及 AQS
96 0