ElasticSearch第三讲:ES详解 - Elastic Stack生态和场景方案

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: ElasticSearch第三讲:ES详解 - Elastic Stack生态和场景方案

1、Elastic Stack生态

Beats + Logstash + ElasticSearch + Kibana

如下是我从官方博客中找到图,这张图展示了ELK生态以及基于ELK的场景(最上方)

由于Elastic X-Pack是面向收费的,所以我们不妨也把X-Pack放进去,看看哪些是由X-Pack带来的,在阅读官网文档时将方便你甄别重点:

1.1、Beats

Beats是一个面向轻量型采集器的平台,这些采集器可以从边缘机器向Logstash、ElasticSearch发送数据,它是由Go语言进行开发的,运行效率方面比较快。从下图中可以看出,不同Beats的套件是针对不同的数据源。

1.2、Logstash

Logstash是动态数据收集管道,拥有可扩展的插件生态系统,支持从不同来源采集数据,转换数据,并将数据发送到不同的存储库中。其能够与ElasticSearch产生强大的协同作用,后被Elastic公司在2013年收购。

它具有如下特性:

1)实时解析和转换数据;

2)可扩展,具有200多个插件;

3)可靠性、安全性。Logstash会通过持久化队列来保证至少将运行中的事件送达一次,同时将数据进行传输加密;

4)监控;

1.3、ElasticSearch

ElasticSearch对数据进行搜索、分析和存储,其是基于JSON的分布式搜索和分析引擎,专门为实现水平可扩展性、高可靠性和管理便捷性而设计的。

它的实现原理主要分为以下几个步骤:

1)首先用户将数据提交到 ElasticSearch 数据库中;

2)再通过分词控制器将对应的语句分词;

3)将分词结果及其权重一并存入,以备用户在搜索数据时,根据权重将结果排名和打分,将返回结果呈现给用户;

1.4、Kibana

Kibana实现数据可视化,其作用就是在ElasticSearch中进行民航。Kibana能够以图表的形式呈现数据,并且具有可扩展的用户界面,可以全方位的配置和管理ElasticSearch。

Kibana最早的时候是基于Logstash创建的工具,后被Elastic公司在2013年收购。

1)Kibana可以提供各种可视化的图表

2)可以通过机器学习的技术,对异常情况进行检测,用于提前发现可疑问题;

2、从日志收集系统看ES Stack的发展

我们看下ELK技术栈的演化,通常体现在日志收集系统中。

一个典型的日志系统包括:

(1)收集:能够采集多种来源的日志数据

(2)传输:能够稳定的把日志数据解析过滤并传输到存储系统

(3)存储:存储日志数据

(4)分析:支持 UI 分析

(5)警告:能够提供错误报告,监控机制

2.1、beats+elasticsearch+kibana

Beats采集数据后,存储在ES中,由Kibana可视化的展示。

2.2、beats+logstath+elasticsearch+kibana

该框架是在上面的框架的基础上引入了logstash,引入logstash带来的好处如下:

(1)Logstash具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻背压。

(2)从其他数据源(例如数据库,S3或消息传递队列)中提取。

(3)将数据发送到多个目的地,例如S3,HDFS或写入文件。

(4)使用条件数据流逻辑组成更复杂的处理管道。

beats结合logstash带来的优势

(1)水平可扩展性,高可用性和可变负载处理:beats和logstash可以实现节点之间的负载均衡,多个logstash可以实现logstash的高可用;

(2)消息持久性与至少一次交付保证:使用beats或Winlogbeat进行日志收集时,可以保证至少一次交付。从Filebeat或Winlogbeat到Logstash以及从Logstash到Elasticsearch的两种通信协议都是同步的,并且支持确认。Logstash持久队列提供跨节点故障的保护。对于Logstash中的磁盘级弹性,确保磁盘冗余非常重要。

(3)具有身份验证和有线加密的端到端安全传输:从Beats到Logstash以及从 Logstash到Elasticsearch的传输都可以使用加密方式传递 。与Elasticsearch进行通讯时,有很多安全选项,包括基本身份验证,TLS,PKI,LDAP,AD和其他自定义领域

增加更多的数据源 比如:TCP,UDP和HTTP协议是将数据输入Logstash的常用方法

2.3、beats+MQ+logstash+elasticsearch+kibana ✅

在如上的基础上我们可以在beats和logstash中间添加一些组件redis、kafka、RabbitMQ等,添加中间件将会有如下好处:

(1)降低对日志所在机器的影响,这些机器上一般都部署着反向代理或应用服务,本身负载就很重了,所以尽可能的在这些机器上少做事;

(2)如果有很多台机器需要做日志收集,那么让每台机器都向Elasticsearch持续写入数据,必然会对Elasticsearch造成压力,因此需要对数据进行缓冲,同时,这样的缓冲也可以在一定程度保护数据不丢失;

(3)将日志数据的格式化与处理放到Indexer中统一做,可以在一处修改代码、部署,避免需要到多台机器上去修改配置;

3、Elastic Stack最佳实践

我们再看下官方开发成员分享的最佳实践。

3.1、日志收集系统

基本的日志系统

增加数据源,和使用MQ

3.2、Metric收集和APM性能监控

3.3、多数据中心方案

通过冗余实现数据高可用

两个数据采集中心(比如采集两个工厂的数据),采集数据后的汇聚

数据分散,跨集群的搜索

4、参考文章

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
数据可视化 Java Windows
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
本文介绍了如何在Windows环境下安装Elasticsearch(ES)、Elasticsearch Head可视化插件和Kibana,以及如何配置ES的跨域问题,确保Kibana能够连接到ES集群,并提供了安装过程中可能遇到的问题及其解决方案。
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
|
2月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
202 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
2月前
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
55 0
|
2月前
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
38 0
|
3月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
4月前
|
运维 监控 数据可视化
Elasticsearch全观测技术解析问题之面对客户不同的场景化如何解决
Elasticsearch全观测技术解析问题之面对客户不同的场景化如何解决
|
5月前
|
数据采集 人工智能 安全
阿里云Elasticsearch 企业级AI搜索方案发布
本文从AI搜索落地的挑战、阿里云在RAG场景的实践、效果提升三个方面,深度解读阿里云Elasticsearch 企业级AI搜索方案。
415 8
|
4月前
|
自然语言处理 Java 索引
ElasticSearch 实现分词全文检索 - Java SpringBoot ES 文档操作
ElasticSearch 实现分词全文检索 - Java SpringBoot ES 文档操作
45 0
|
4月前
|
自然语言处理 Java 索引
ElasticSearch 实现分词全文检索 - Java SpringBoot ES 索引操作
ElasticSearch 实现分词全文检索 - Java SpringBoot ES 索引操作
47 0
|
4月前
|
自然语言处理 Docker 容器
ElasticSearch 实现分词全文检索 - ES、Kibana、IK分词器安装
ElasticSearch 实现分词全文检索 - ES、Kibana、IK分词器安装
61 0