OpenCV-图像着色(采用DNN模块导入深度学习模型)

简介: OpenCV-图像着色(采用DNN模块导入深度学习模型)

实现原理

      图像着色最早是应用在图像修复方面,将一些过去的黑白旧照根据预设色盘上色,得到色彩饱满的彩色图,比如0灰度对应某个RGB数值,120灰度对应某个RGB数值等等,这也是当前OpenCV中已集成好的applycolormap(伪彩色函数)实现原理,按照不同的色盘给灰度图上色,可得到不同样式的伪彩色图,像当前深度图像、红外成像、雷达地图成像等领域就采用这类方法实现图像色彩重绘。


      若要将图像上色为符合现实逻辑的语义颜色和色调,就不能单单依靠固定的色盘方法,过去常采用的方案一般是依赖人主观的上色能力,就如PS中,可以通过控制色彩曲线、颜色占比等方法将黑白图慢慢恢复成彩色图。而随着深度学习、计算机视觉近几年的快速发展,将灰度图智能且高效地上色成为可能。基于图像着色算法和caffe、tensorflow、pytorch等深度学习框架,将相关的巨量数据集训练成具备一定预测能力的深度学习模型,通过这些模型即可实现更优的图像着色效果。


      本文通过OpenCV中DNN模块导入深度学习模型的方法,来实现图像着色效果。


具体流程

      1)加载模型信息,模型下载链接在下方,若不想用钱下载可以三连,评论留下邮箱我会尽快发送完整模型文件,确保打开即用。

string modelTxt = "colorization_deploy_v2.prototxt";
string modelBin = "colorization_release_v2.caffemodel";
Net net = dnn::readNetFromCaffe(modelTxt, modelBin);

     2)设置相关参数。

const int W_in = 224;
const int H_in = 224;
int sz[] = { 2, 313, 1, 1 };
const Mat Pts_in_hull(4, sz, CV_32F, pts_in_hull);
Ptr<dnn::Layer> class8_ab = net.getLayer("class8_ab");
class8_ab->blobs.emplace_back(Pts_in_hull);
Ptr<dnn::Layer> conv8_313_rh = net.getLayer("conv8_313_rh");
conv8_313_rh->blobs.emplace_back(Mat(1, 313, CV_32F, Scalar(2.606)));

      3)将图像转化为Lab颜色空间,提取L通道操作,这样的好处是仅操作亮度即可,如果用RGB,那要同时处理三个通道的数据,而三个参数调控难度太大。

Mat lab, L, input;
img.convertTo(img, CV_32F, 1.0 / 255);
cvtColor(img, lab, COLOR_BGR2Lab);
extractChannel(lab, L, 0);
resize(L, input, Size(W_in, H_in));
input -= 50;

      4)将L通道图像输入到网络中,前向计算,从网络输出中提取a和b通道,组合成彩色图即完成。

Size siz(result.size[2], result.size[3]);
Mat a = Mat(siz, CV_32F, result.ptr(0, 0));
Mat b = Mat(siz, CV_32F, result.ptr(0, 1));
resize(a, a, img.size());
resize(b, b, img.size());
Mat color, chn[] = { L, a, b };
merge(chn, 3, lab);
cvtColor(lab, color, COLOR_Lab2BGR);

C++测试代码

#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace cv;
using namespace cv::dnn;
using namespace std;
// 通过pts_in_hull.npy转化
static float pts_in_hull[] = {
  -90., -90., -90., -90., -90., -80., -80., -80., -80., -80., -80., -80., -80., -70., -70., -70., -70., -70., -70., -70., -70.,
  -70., -70., -60., -60., -60., -60., -60., -60., -60., -60., -60., -60., -60., -60., -50., -50., -50., -50., -50., -50., -50., -50.,
  -50., -50., -50., -50., -50., -50., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -30.,
  -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -20., -20., -20., -20., -20., -20., -20.,
  -20., -20., -20., -20., -20., -20., -20., -20., -20., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10.,
  -10., -10., -10., -10., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10., 10., 10., 10., 10., 10., 10.,
  10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20.,
  20., 20., 20., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 40., 40., 40., 40.,
  40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 50., 50., 50., 50., 50., 50., 50., 50., 50., 50.,
  50., 50., 50., 50., 50., 50., 50., 50., 50., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60.,
  60., 60., 60., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 80., 80., 80.,
  80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 90., 90., 90., 90., 90., 90., 90., 90., 90., 90.,
  90., 90., 90., 90., 90., 90., 90., 90., 90., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 50., 60., 70., 80., 90.,
  20., 30., 40., 50., 60., 70., 80., 90., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -20., -10., 0., 10., 20., 30., 40., 50.,
  60., 70., 80., 90., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., -40., -30., -20., -10., 0., 10., 20.,
  30., 40., 50., 60., 70., 80., 90., 100., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., -50.,
  -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., -60., -50., -40., -30., -20., -10., 0., 10., 20.,
  30., 40., 50., 60., 70., 80., 90., 100., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90.,
  100., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -80., -70., -60., -50.,
  -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -90., -80., -70., -60., -50., -40., -30., -20., -10.,
  0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -100., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30.,
  40., 50., 60., 70., 80., 90., -100., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70.,
  80., -110., -100., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., -110., -100.,
  -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., -110., -100., -90., -80., -70.,
  -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., -110., -100., -90., -80., -70., -60., -50., -40., -30.,
  -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0.
};
int main()
{
  string modelTxt = "colorization_deploy_v2.prototxt";
  string modelBin = "colorization_release_v2.caffemodel";
  string imageFile = "test.jpg";
  string original = "zhu.jpg";
  // 读取灰度图用来作颜色还原
  Mat gray = imread(original, 0);
  // 原图对比
  Mat ori = imread(original);
  imwrite(imageFile, gray);
  Mat img = imread(imageFile);
  if (img.empty()) {
    cout << "Can't read image from file: " << imageFile << endl;
    return 2;
  }
  // 预训练网络的固定输入大小
  const int W_in = 224;
  const int H_in = 224;
  Net net = dnn::readNetFromCaffe(modelTxt, modelBin);
  // 设置训练得到的参数数据
  int sz[] = { 2, 313, 1, 1 };
  const Mat Pts_in_hull(4, sz, CV_32F, pts_in_hull);
  Ptr<dnn::Layer> class8_ab = net.getLayer("class8_ab");
  class8_ab->blobs.emplace_back(Pts_in_hull);
  Ptr<dnn::Layer> conv8_313_rh = net.getLayer("conv8_313_rh");
  conv8_313_rh->blobs.emplace_back(Mat(1, 313, CV_32F, Scalar(2.606)));
  // 提取L通道灰度图,并均值化
  Mat lab, L, input;
  img.convertTo(img, CV_32F, 1.0 / 255);
  cvtColor(img, lab, COLOR_BGR2Lab);
  extractChannel(lab, L, 0);
  resize(L, input, Size(W_in, H_in));
  input -= 50;
  // L通道图像输入到网络,前向计算
  Mat inputBlob = blobFromImage(input);
  net.setInput(inputBlob);
  Mat result = net.forward();
  // 从网络输出中提取得到的a,b通道
  Size siz(result.size[2], result.size[3]);
  Mat a = Mat(siz, CV_32F, result.ptr(0, 0));
  Mat b = Mat(siz, CV_32F, result.ptr(0, 1));
  resize(a, a, img.size());
  resize(b, b, img.size());
  // 通道合并转换成彩色图
  Mat color, chn[] = { L, a, b };
  merge(chn, 3, lab);
  cvtColor(lab, color, COLOR_Lab2BGR);
  // 结果展示
  color.convertTo(color, CV_8U, 255.);
  imshow("color", color);
  imshow("gray", gray);
  imshow("ori", ori);
  waitKey();
  return 0;
}

测试效果

图1 原图

图2 灰度图

图3 着色图

      不难看出,还原的着色图还是比较符合现实语义色调的,不过还是同原图的一些色彩有所差异,毕竟数据量有限。这个数据集当初估计没少放黄色调的图,处理了好多图像都偏暗黄系。


      注意:测试中发现,OpenCV版本为4以上,debug和release都没问题;3.4版本的debug没问题,release总是报错。所以建议用OpenCV4。

相关文章
|
13天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
113 59
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
46 5
|
3天前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
37 13
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
18 1
|
10天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
10天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
27 2
|
9天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
9天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
47 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
43 6
|
11天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
34 2

热门文章

最新文章

下一篇
无影云桌面