【后端必看】Redis 最佳实践

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
日志服务 SLS,月写入数据量 50GB 1个月
简介: 【后端必看】Redis 最佳实践

1. Redis 键值设计

1.1 优雅的 key 结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:


遵循基本格式:[业务名称]:[数据名]:[id]

长度不超过44字节

不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:

微信截图_20231016195155.png

这样设计的好处:


可读性强

避免 key 冲突

方便管理

更节省内存: key 是 String 类型,底层编码包含int、embstr 和r aw 三种。embstr 在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为 raw 模式存储,在 raw 模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储 SDS 内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

1.2 拒绝 BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:


Key本身的数据量过大:一个String类型的Key,它的值为5 MB

Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个

Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令

微信截图_20231016195218.png

推荐值:


单个 key 的 value 小于10KB

对于集合类型的 key,建议元素数量小于1000

BigKey的危害

网络阻塞

对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢

数据倾斜

BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡

Redis阻塞

对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞

CPU压力

对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

如何发现BigKey

①redis-cli --bigkeys

利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

命令:redis-cli -a 密码 --bigkeys

微信截图_20231016195301.png

② scan 扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)

微信截图_20231016195310.png

scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组

Redis 实战-扫描 bigKey

③第三方监控

利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况

https://github.com/sripathikrishnan/redis-rdb-tools

④网络监控

自定义工具,监控进出Redis的网络数据,超出预警值时主动告警

一般阿里云搭建的云服务器就有相关监控页面

如何删除 BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。


redis 3.0 及以下版本

如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey

Redis 4.0以后

Redis在4.0后提供了异步删除的命令:unlink

1.3 恰当的数据类型

注意:对于 hash 类型,entry 不超过 500 时底层使用的 ziplist 数据类型,占用空间小。hash 的 entry 数量超过500时,会使用哈希表而不是ZipList,内存占用较多。

总结:

Key的最佳实践

固定格式:[业务名]:[数据名]:[id]

足够简短:不超过44字节

不包含特殊字符

Value的最佳实践:

合理的拆分数据,拒绝BigKey

选择合适数据结构

Hash结构的entry数量不要超过1000

设置合理的超时时间

2. 批处理优化

3. 服务器端优化-持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:


用来做缓存的Redis实例尽量不要开启持久化功能

建议关闭RDB持久化功能,使用AOF持久化

利用脚本定期在slave节点做RDB,实现数据备份

设置合理的rewrite阈值,避免频繁的bgrewrite

配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞

部署有关建议:

Redis实例的物理机要预留足够内存,应对fork和rewrite

单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力

不要与CPU密集型应用部署在一起

不要与高硬盘负载应用一起部署。例如:数据库、消息队列

4. 服务器端优化-慢查询优化

4.1 什么是慢查询

并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。

慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。

微信截图_20231016195354.png

慢查询的阈值可以通过配置指定:

slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000

慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:

slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000

微信截图_20231016195404.png

修改这两个配置可以使用:config set命令:

微信截图_20231016195433.png

4.2 如何查看慢查询

知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表
  • 微信截图_20231016195444.png

5. 服务器端优化-命令及安全配置

安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。

Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.漏洞重现方式:https://cloud.tencent.com/developer/article/1039000

为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞

漏洞出现的核心的原因有以下几点:


Redis未设置密码

利用了Redis的config set命令动态修改Redis配置

使用了Root账号权限启动Redis

所以:如何解决呢?我们可以采用如下几种方案

为了避免这样的漏洞,这里给出一些建议:


Redis一定要设置密码

禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。

bind:限制网卡,禁止外网网卡访问

开启防火墙

不要使用Root账户启动Redis

尽量不是有默认的端口

6. 服务器端优化- Redis 内存划分和内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。


有关碎片问题分析

Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题


进程内存问题分析:

这片内存,通常我们都可以忽略不计


缓冲区内存问题分析:

一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。

微信截图_20231016195518.png

于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:

  • info memory:查看内存分配的情况
  • 微信截图_20231016195528.png
  • memory xxx:查看key的主要占用情况
  • 微信截图_20231016195556.png
  • 接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?

内存缓冲区常见的有三种:


复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb

AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限

客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题

客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区

微信截图_20231016195613.png

我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个

1、设置一个大小

2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力


7. 服务器端集群优化-集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:


集群完整性问题

集群带宽问题

数据倾斜问题

客户端性能问题

命令的集群兼容性问题

lua和事务问题

问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:

大家可以设想一下,如果有几个 slot 不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成 no,即有slot不能使用时,我们的redis集群还是可以对外提供部分服务

微信截图_20231016195659.png

问题2、集群带宽问题

集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:


插槽信息

集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题

解决途径:


避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。

避免在单个物理机中运行太多Redis实例

配置合适的 cluster-node-timeout 值

问题3、命令的集群兼容性问题

有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。


问题4、lua和事务的问题

lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的


那我们到底是集群还是主从

单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
缓存 监控 安全
构建高效后端系统的最佳实践
本文将深入探讨如何构建一个高效的后端系统,从设计原则、架构选择到性能优化等方面详细阐述。我们将结合实际案例和理论分析,帮助读者了解在构建后端系统时需要注意的关键点,并提供一些实用的建议和技巧。
41 2
|
1月前
|
JavaScript API 微服务
探索现代后端开发:关键技术和最佳实践
【10月更文挑战第6天】探索现代后端开发:关键技术和最佳实践
|
3月前
|
JavaScript NoSQL Redis
Vue中实现修改邮箱、手机号等流程的大致过程、验证码由后端的redis生成验证(版本1.0)
这篇文章记录了在Vue中实现修改手机号和邮箱的大致流程,包括使用过滤器部分隐藏展示的手机号和邮箱,以及通过点击触发路由跳转的便捷方式。文章还描述了旧号码和新号码验证的界面实现,其中验证码由后端生成并通过弹窗展示给用户,未来可以接入真正的手机验证码接口。此外,还提供了修改邮箱的页面效果截图,并强调了学习是一个永无止境的过程。
Vue中实现修改邮箱、手机号等流程的大致过程、验证码由后端的redis生成验证(版本1.0)
|
2月前
|
JSON 前端开发 API
打造高效后端:RESTful API 设计的最佳实践
【9月更文挑战第14天】在数字化时代,后端开发是构建强大、灵活和可维护应用程序的基石。本文将深入探讨如何设计高效的RESTful API,包括清晰的资源定义、合理的HTTP方法使用、URL结构规划、状态码的准确返回以及数据格式的设计。通过这些实践,开发者能够创建出既符合行业标准又易于维护和扩展的API,为前端提供强大的数据支持,确保整个应用的稳定性和性能。
167 74
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。
55 4
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
|
21天前
|
监控 安全 Java
构建高效后端服务:微服务架构深度解析与最佳实践###
【10月更文挑战第19天】 在数字化转型加速的今天,企业对后端服务的响应速度、可扩展性和灵活性提出了更高要求。本文探讨了微服务架构作为解决方案,通过分析传统单体架构面临的挑战,深入剖析微服务的核心优势、关键组件及设计原则。我们将从实际案例入手,揭示成功实施微服务的策略与常见陷阱,为开发者和企业提供可操作的指导建议。本文目的是帮助读者理解如何利用微服务架构提升后端服务的整体效能,实现业务快速迭代与创新。 ###
53 2
|
1月前
|
存储 缓存 API
构建高效后端:RESTful API 设计的最佳实践
【10月更文挑战第2天】在数字化时代,后端开发是连接用户与数据的桥梁。本文将深入探讨如何设计一个高效、易于维护的后端系统,特别是围绕RESTful API的设计原则和最佳实践。我们将从基础概念出发,逐步深入到实际案例分析,最终通过代码示例具体展示如何实现这些设计原则。无论你是初学者还是有经验的开发者,这篇文章都将为你提供价值,帮助你构建更优秀的后端服务。
59 10
|
1月前
|
NoSQL Java Redis
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
这篇文章介绍了如何使用Spring Boot整合Apache Shiro框架进行后端开发,包括认证和授权流程,并使用Redis存储Token以及MD5加密用户密码。
24 0
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
|
1月前
|
安全 测试技术 API
后端开发中的API设计原则与最佳实践
本文将深入探讨在后端开发中API(应用程序编程接口)设计的基本原则和最佳实践。通过阐述如何构建高效、可扩展且安全的API,帮助开发者提升后端系统的性能和用户体验。不同于传统的摘要,本文无需包含背景介绍,直接进入主题,为读者提供实用的指导。
57 7
|
3月前
|
JSON 安全 API
构建高效后端API:最佳实践与代码示例
【8月更文挑战第2天】 在数字化时代,后端API是连接数据与用户的桥梁。本文深入探讨了如何设计并实现高效的后端API,从理论到实践,提供了实用的技巧和代码示例。通过阅读本篇文章,你将学会如何避免常见的陷阱,优化你的API性能,从而提供更加流畅的用户体验。