2023年8月22日OpenAI推出了革命性更新:ChatGPT-3.5 Turbo微调和API更新,为您的业务量身打造AI模型

简介: 2023年8月22日OpenAI推出了革命性更新:ChatGPT-3.5 Turbo微调和API更新,为您的业务量身打造AI模型

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁

🦄 博客首页——猫头虎的博客🎐

🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺

🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐

🌊 《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥




ChatGPT-3.5 Turbo微调功能及API更新详解

摘要:


2023年8月22日OpenAI推出了GPT-3.5 Turbo的微调功能,允许开发者使用自己的数据进行模型定制,以适应特定的业务需求。这项更新旨在提高模型的灵活性和效率。微调是一种特殊的模型训练技术,它在预训练模型的基础上进行进一步的优化,使模型更好地适应特定的业务场景。开发者可以使用微调来改进模型的指导能力、输出格式和语调,以更好地满足业务需求。微调还与其他技术如提示工程和信息检索相结合,提供更强大的功能。


1. GPT-3.5 Turbo微调功能简介

  • OpenAI已推出GPT-3.5 Turbo的微调功能,允许开发者使用自己的数据进行模型定制,以适应特定的用例。
  • GPT-4的微调功能预计将在今年秋天发布。
  • 早期测试显示,经过微调的GPT-3.5 Turbo在某些特定任务上的性能可以与GPT-4相匹配,甚至超越。

GPT-3.5 Turbo的微调功能是OpenAI为开发者提供的一项新功能,旨在帮助他们更好地定制模型,以满足特定的业务需求。这项更新的背后有一个核心的目标:使模型更加灵活和高效。开发者不再受限于预训练模型的固有能力,而是可以根据自己的需求对模型进行微调,从而获得更好的性能。

此外,OpenAI还计划在今年秋天推出GPT-4的微调功能。这意味着开发者将有更多的选择和机会来优化他们的模型。早期的测试数据显示,经过微调的GPT-3.5 Turbo在某些特定任务上的性能甚至可以超越GPT-4的基本功能。这为开发者提供了一个强大的工具,帮助他们在各种任务上获得更好的结果。

2. 微调的定义和应用

  • 微调是一种在预训练模型的基础上,对特定任务进行深度训练的方法。
  • 微调的目的是使模型在特定业务场景上的性能更好。
  • 例如,可以使用大量的法律数据集对预训练的GPT3.5模型进行微调,使其在法律领域的表现更加出色。

微调是一种特殊的模型训练技术,它允许开发者在预训练模型的基础上进行进一步的优化。这种方法的核心思想是利用大量的数据对模型进行预训练,然后使用特定任务的数据对模型进行微调。这样,模型可以更好地适应特定的业务场景和需求。

例如,如果一个公司希望使用GPT-3.5模型来处理法律相关的问题,他们可以使用大量的法律数据对模型进行微调。这样,模型就可以更好地理解和处理法律问题,为用户提供更准确和专业的答案。

微调不仅仅是对模型参数的简单调整。它是一个复杂的过程,需要深入的理解和大量的实验。但是,得益于OpenAI提供的工具和指导,开发者可以更容易地进行微调,获得更好的结果。

3. 微调的关键点

  • 微调可以提供比提示更高质量的结果。
  • 微调允许在一个提示中训练更多的示例。
  • 由于提示更短,微调可以节省代币。
  • 微调可以降低延迟请求。

微调的过程中有几个关键点需要注意。首先,微调的目的是提高模型的性能,而不是简单地改变其行为。这意味着开发者应该明确他们的目标,并选择合适的数据和策略来达到这些目标。

其次,微调是一个迭代的过程。这意味着开发者可能需要多次进行微调,才能获得满意的结果。每次微调都应该基于前一次的结果,以及对模型的深入理解。

最后,微调是一个需要时间和资源的过程。尽管OpenAI提供了许多工具和资源来帮助开发者,但他们仍然需要投入大量的时间和精力来获得最佳的结果。

4. 微调的步骤

  1. 准备并上传训练数据。
  2. 训练一个新的精调模型。
  3. 使用您的精调模型。

微调的过程可以分为几个步骤。首先,开发者需要准备和上传训练数据。这些数据应该是与特定任务相关的,可以帮助模型更好地理解和处理这些任务。

接下来,开发者需要训练一个新的精调模型。这一步骤涉及到对模型参数的调整,以及对模型的进一步优化。

最后,开发者可以使用他们的精调模型来处理实际的任务。这一步骤需要对模型的性能进行测试和评估,以确保它可以满足业务的需求。

5. 支持微调的模型

  • gpt-3.5-turbo-0613 (推荐)
  • babbage-002
  • davinci-002

6. 微调的成本

  • 初始训练成本:每1000个标记 $0.008
  • 使用输入:每1000个令牌 $0.012
  • 使用输出:每1000个令牌 $0.016

总结

OpenAI最近发布了GPT-3.5 Turbo的微调功能,这是开发者期待已久的一个重要更新。这项更新允许开发者使用自己的数据来定制模型,使其更好地适应特定的用例。早期的测试结果显示,经过微调的GPT-3.5 Turbo在某些狭窄的任务上的性能甚至可以匹配或超越GPT-4的基本功能。

自GPT-3.5 Turbo发布以来,许多开发者和企业都表示希望能够定制模型,为他们的用户创造独特和差异化的体验。现在,开发者可以进行有监督的微调,使模型更好地为他们的用例服务。

在私有测试阶段,微调的客户已经能够在常见的用例中显著提高模型的性能。例如,微调可以使模型更好地遵循指令,如使输出简洁或始终以给定的语言响应。此外,微调还可以提高模型的输出格式的一致性,这对于需要特定响应格式的应用程序至关重要。

微调还有其他的优点,如提高性能、缩短提示长度、处理更多的令牌等。当与其他技术如提示工程、信息检索和函数调用结合使用时,微调的效果最为显著。


参考资料:


原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习 复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。


目录
相关文章
|
6天前
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
84 23
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
10天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
124 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
12天前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
50 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
1天前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
24 12
|
4天前
|
存储 人工智能 数据可视化
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
欢迎学习《基于 DANet 和 Deeplabv3 模型的遥感图像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的遥感地图区域分割系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
13 0
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
|
5天前
|
存储 Serverless 文件存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
14 0
|
9天前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
3天前
|
JSON 搜索推荐 API
京东店铺所有商品接口系列(京东 API)
本文介绍如何使用Python调用京东API获取店铺商品信息。前期需搭建Python环境,安装`requests`库并熟悉`json`库的使用。接口采用POST请求,参数包括`app_key`、`method`、`timestamp`、`v`、`sign`和业务参数`360buy_param_json`。通过示例代码展示如何生成签名并发送请求。应用场景涵盖店铺管理、竞品分析、数据统计及商品推荐系统,帮助商家优化运营和提升竞争力。
40 23
|
2天前
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
20 12

热门文章

最新文章