解决Pandas KeyError: “None of [Index([...])] are in the [columns]“问题

简介: 解决Pandas KeyError: “None of [Index([...])] are in the [columns]“问题

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁

🦄 博客首页——猫头虎的博客🎐

🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺

🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐

🌊 《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

解决Pandas KeyError: "None of [Index([…])] are in the [columns]"问题

摘要

在使用Pandas处理数据时,我们可能会遇到一个常见的错误,即尝试从DataFrame中选择不存在的列时引发的KeyError。在本文中,我们将探讨这个问题的原因,并提供一种解决方案。

问题描述

当我们尝试从DataFrame中选择一组列,但其中一些列并不在DataFrame中时,就会出现这个问题。例如,考虑以下代码:

df = df[['title', 'url', 'postTime', 'viewCount', 'collectCount', 'diggCount','commentCount']]

如果df中不存在上述列中的任何一个,我们就会收到以下错误消息:

KeyError: "None of [Index(['title', 'url', 'postTime', 'viewCount', 'collectCount', 'diggCount', 'commentCount'], dtype='object')] are in the [columns]"

原因

这个错误的主要原因是我们尝试访问DataFrame中不存在的列。可能的原因有:

  1. 列名的拼写错误或大小写错误。
  2. 数据源的结构已经发生了变化,导致某些预期的列不再存在。
  3. 数据源中没有足够的数据来生成所有预期的列。

解决方案

1. 检查列名

首先,确保你要选择的列名与df中的列名完全匹配,包括大小写。你可以使用以下代码来查看df的所有列名:

print(df.columns)

2. 选择存在的列

为了确保代码的健壮性,我们可以选择那些确实存在的列,而不是硬编码我们想要的列名。以下是如何做到这一点的方法:

cols_to_select = ['title', 'url', 'postTime', 'viewCount', 'collectCount', 'diggCount', 'commentCount']
existing_cols = [col for col in cols_to_select if col in df.columns]
df = df[existing_cols]

这样,即使某些列不存在,我们的代码也不会崩溃。

总结

在使用Pandas处理数据时,我们必须确保我们尝试访问的列确实存在于DataFrame中。通过动态地选择存在的列,我们可以确保代码的健壮性,即使数据源的结构发生了变化。

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习 复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。


目录
相关文章
|
数据采集 数据挖掘 数据处理
如何在Pandas中将索引(index)转换为数据列
如何在Pandas中将索引(index)转换为数据列
1179 0
|
Python
【Python】已解决:(pandas读取DataFrame列报错)raise KeyError(key) from err KeyError: (‘name‘, ‘age‘)
【Python】已解决:(pandas读取DataFrame列报错)raise KeyError(key) from err KeyError: (‘name‘, ‘age‘)
1947 0
|
SQL 数据挖掘 数据库
【100天精通Python】Day54:Python 数据分析_Pandas入门基础,核心数据结构Serise、DataFrame、Index对象,数据的导入操作
【100天精通Python】Day54:Python 数据分析_Pandas入门基础,核心数据结构Serise、DataFrame、Index对象,数据的导入导出操作
408 0
Pandas pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.
Pandas pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.
Pandas pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.
|
索引 Python
Pandas 根据 index 索引选择某些行
Pandas 根据 index 索引选择某些行
解决pandas.errors.EmptyDataError: No columns to parse from file
解决pandas.errors.EmptyDataError: No columns to parse from file
3428 0
解决pandas.errors.EmptyDataError: No columns to parse from file
|
数据处理 索引 Python
好习惯!pandas 8 个常用的 index 设置
在数据处理时,经常会因为index报错而发愁。不要紧,本次来和大家聊聊pandas中处理索引的几种常用方法。
好习惯!pandas 8 个常用的 index 设置
|
3月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
317 0
|
3月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
485 0
|
5月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
456 0