算法:动态规划的入门理解

简介: 算法:动态规划的入门理解

从本篇开始总结的是动态规划的一些内容,动态规划是算法中非常重要的一个版块,因此也是学习算法中的一个重点,在学习动态规划前应当要把动态规划的基础知识学习一下

算法原理

动态规划既然是一个新的算法,这个名字也是新名字,那么就要首先明确这个算法的名字代表什么含义

动态规划是什么?

动态规划其实就是dp表中的值所表示的含义

那什么又是dp表?

dp表是解决这类问题中必须要使用的一个内容,通常是借助vector来表示

dp表怎么写出来?

一般来说题目要求中会有一些提示,同时在分析问题的过程中,如果遇到了分析的过程中有重复的子问题,也可以借助这个逻辑写出一个状态转移方程,利用这个状态转移方程就可以填写到dp表

状态转移方程

状态转移方程就是在动态规划中根据一部分提示找到dp表的填入方法,再根据这个方法就可以借助dp表解决问题,因此状态转移方程是解决问题的关键

题目解析

首先用一个比较简单的题目来上手动态规划

第n个泰波那契数列

对于这个题来说,可以用上面的动态规划的方法来处理:

首先创建一个dp表,再从题目中找到状态转移方程,再利用状态转移方程写入dp表,再利用dp表求出要找的数据

class Solution 
{
public:
    int tribonacci(int n) 
    {
        // 处理边界
        if(n==0)
        {
            return 0;
        }
        if(n==1 || n==2)
        {
            return 1;
        }
        // 创建dp表
        vector<int> dp(n+1);
        // 初始化dp表
        dp[0]=0;
        dp[1]=1;
        dp[2]=1;
        //填入dp表
        for(int i=3;i<=n;i++)
        {
            dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
        }
        // 返回值
        return dp[n];
    }
};

三步问题

分析问题:

假设现在有1个台阶,那么小孩跳到这个台阶的方法有1种,直接从地面走到第一个台阶上

假设现在有2个台阶,那么小孩跳到这个台阶的方法有2种,第一种从地面直接走到第二个台阶上,第二种是小孩从地面走到第一个台阶,再从第一个台阶走到第二个台阶上

假设现在有3个台阶,那么小孩跳到这个台阶的方法有4种,第一种直接跳到第三个台阶上,第二种先跳到第一个台阶,再从第一个台阶向第三个台阶跳,而从第一个台阶向第三个台阶跳又有两种,参考有2个台阶的方案,那么总共第二种方法有2种,第三种小孩跳到第二个台阶,再从第二个台阶跳到第三个台阶,因此总共有四种方法

假设现在有4个台阶,那么小孩跳到第四个台阶的方法总共有7种,先让小孩走到第一个台阶,再从第一个台阶走到第四个台阶即可,而小孩走到第一个台阶的方法有1种;也可以先让小孩走到第二个台阶,再从第二个台阶走到第四个台阶,而小孩走到第二个台阶的方法有2种;先让小孩走到第三个台阶,再从第三个台阶直接到第四个台阶,而直接让小孩走到第四个台阶的方法有4种,因此上面的这些总计是7种

假设现在有5个台阶,那么小孩跳到第五个台阶的方法有13种,先让小孩跳到第二个台阶,再从第二个台阶直接到第五个台阶…

因此规律就找到了,其实就是一个斐波那契数列的变形问题,利用上面的例题的思路就可以解决这个问题

class Solution 
{
public:
    int waysToStep(int n) 
    {
      vector<long long> dp(n+4);
      dp[0]=0;
      dp[1]=1;
      dp[2]=2;
      dp[3]=4;
      for(int i=4;i<=n;i++)
      {
          dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
          dp[i] %= 1000000007;
      }
      return dp[n];
    }
};

使用最小花费爬楼梯

此题也是动态规划中的一个典型题,这里从两个角度来看这道题

从最开始的介绍中可以知道,对于动态规划的问题来说,关键是dp[i]的意义和状态转移方程,在解决问题的过程中要优先对这两个部分进行思考和解决,那么两个不同的dp[i]的角度来看这个题

首先从第一个角度来看:

如果这里的dp[i]表示的是,上到第i个台阶需要花费多少钱:

那么可以这样思考问题,要知道上到第i个台阶需要多少钱,就必然要知道上到第i-1个台阶要花多少钱,再用这个钱加上上第i-1个台阶要花多少钱,由于一次可以上两个台阶,因此也要知道上到第i-2个台阶需要多少钱和上这个台阶需要多少钱,再比较一下从第i-1个台阶上划算还是从第i-2个台阶上划算,比较后就可以得到dp[i]的值,因此状态转移方程就很容易得到了

dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

此时注意一下边界初始化问题:在第0和第1个台阶是不需要花钱的,于是初始化为0即可,代码也可以很好的实现出来

class Solution 
{
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        vector<int> dp(cost.size()+1);
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<=cost.size();i++)
        {
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.size()];
    }
};

以上为第一种思考的方式,dp[i]对应的意义还有其他,这里还可以理解为从第i个位置上到最顶上需要的花费,因此这里也可以借助这个意义来解决

那如果要求从第i个台阶上到顶端要花多少钱,需要知道从第i个台阶一次上一个台阶还是一次上两个台阶比较划算,因此这里又需要知道i+1和i+2的值,根据这两个的值决定一次上一个台阶还是上两个台阶,因此状态转移方程也可以得出来了:

dp[i]=min(dp[i+1]+cost[i],dp[i+2]+cost[i]);

那么代码的实现也可以得出:

class Solution 
{
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        int n=cost.size();
        vector<int> dp(n);
        dp[n-1]=cost[n-1];
        dp[n-2]=cost[n-2];
        for(int i=n-3;i>=0;i--)
        {
            dp[i]=min(dp[i+1]+cost[i],dp[i+2]+cost[i]);
        }
        return min(dp[0],dp[1]);
    }
};


相关文章
|
5天前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
26 8
|
7天前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
17 3
|
5天前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
|
6天前
|
算法 程序员 Python
算法小白到大神的蜕变之路:Python分治法、贪心、动态规划,一步步带你走向算法巅峰!
【7月更文挑战第9天】探索算法之旅,以Python解锁编程高手之路。分治法如二分查找,将复杂问题拆解;贪心算法解决活动选择,每次选取局部最优;动态规划求斐波那契数列,避免重复计算,实现全局最优。每一步学习,都是编程能力的升华,助你应对复杂挑战,迈向算法大师!
12 1
|
6天前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
17 1
|
6天前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
14 1
|
6天前
|
存储 算法 大数据
Python算法高手的必修课:深入理解分治法、贪心算法、动态规划,让你的代码更智能!
【7月更文挑战第9天】在Python算法学习中,分治法(如归并排序)将大问题分解为小部分递归解决;贪心算法(如货币找零)在每步选择局部最优解尝试达到全局最优;动态规划(如斐波那契数列)通过存储子问题解避免重复计算,解决重叠子问题。掌握这三种方法能提升代码效率,解决复杂问题。
|
7天前
|
算法 索引 Python
逆袭算法界!Python分治法、贪心算法、动态规划深度剖析,带你走出算法迷宫!
【7月更文挑战第8天】分治法,如快速排序,将大问题分解并合并解;贪心算法,选择局部最优解,如活动选择;动态规划,利用最优子结构避免重复计算,如斐波那契数列。Python示例展示这些算法如何解决实际问题,助你精通算法,勇闯迷宫。
16 1
|
7天前
|
算法 索引 Python
Python算法设计与分析大揭秘:分治法、贪心算法、动态规划...掌握它们,让你的编程之路更加顺畅!
【7月更文挑战第8天】探索Python中的三大算法:分治(如快速排序)、贪心(活动选择)和动态规划(0-1背包问题)。分治法将问题分解求解再合并;贪心策略逐步求局部最优;动态规划通过记忆子问题解避免重复计算。掌握这些算法,提升编程效率与解决问题能力。
15 1
|
16天前
|
算法 程序员
高阶算法班从入门到精通之路
高阶算法班从入门到精通之路
15 3