【大数据开发技术】实验03-Hadoop读取文件

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【大数据开发技术】实验03-Hadoop读取文件

Hadoop读取文件

一、实验目标

  1. 熟练掌握hadoop操作指令及HDFS命令行接口
  2. 掌握HDFS原理
  3. 掌握HDFS的API使用方法
  4. 掌握通过URL类读取HDFS上的文件内容的方法
  5. 掌握FileSystem读取HDFS上文件内容的方法

二、实验要求

  1. 给出每个实验操作步骤成功的效果截图,。
  2. 对本次实验工作进行全面的总结。
  3. 完成实验内容后,实验报告文件重命名为:学号姓名实验三。

三、实验内容

1.使用FileSystem类读取HDFS上的文件,把文件的内容打印到标准输出流中,分别在本地和集群上进行测试,给出详细实现过程、完整代码和实现效果截图,最终效果图参考图1和图2。(要求在本地新建一个文件,文件名或文件内容体现本人名字,文件内容自拟,中英文均可,使用shell命令上传到HDFS上。)

08da7161651d4af3b2b610a12f1e4d52.png

图1 FileSystem读取文件本地测试效果图

c42c77570a5e43c884109b9d23b6f656.png

图2 FileSystem读取文件集群测试效果图


2.通过URL类,读取HDFS上的文件内容,给出主要实现过程、完整代码和实现效果截图,最终效果图参考图3和图4。(要求在本地新建一个文件,文件名或文件内容体现本人名字,文件内容自拟,中英文均可,使用shell命令上传到HDFS上)

00150a83d32a4d7980f4a28acfc65790.png

图3 URL读取文件本地测试效果图

45e2e651a06842a3864327a00a4d6bfb.png

图4 URL读取文件集群测试效果图


3.使用FileSystem类读取HDFS上的多个文件,把文件的内容打印到标准输出流中,给出主要实现过程、完整代码和实现效果截图。实现效果截图参考图5(图5是读取cs.txt和cslg.txt两个文件内容的测试效果截图)。要求在本地新建两个,其中两个文件名为自己的学号和姓名,文件内容分别个人简介和家乡信息,文件内容中英文均可,使用shell命令上传到HDFS上。

0822da15627b4df7aabe238a354d7925.png

图5 FileSystem方式读取多个文件内容


4.通过URL类,读取HDFS上的多个文件的内容,给出主要实现过程、完整代码和实现效果截图,最终效果图参考图6。使用上一个实验中的两个文本文件,也可以重新创建两个文本文件,文件命名同上一个实验,文件内容自拟。

d591447f1df04fef807b2c7b8754d2fb.png

图6 URL方式读取多个文件内容

四、实验步骤

实验1

实验代码

package com.wjw.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
public class FileSystemCat01 {
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        String uri = "hdfs://master:9000/wjw01.txt";
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://master:9000");
        FileSystem fs = null;
        FSDataInputStream in =null;
        try{
            fs = FileSystem.get(conf);
            in = fs.open(new Path(uri));
            IOUtils.copyBytes(in, System.out, 4096, false);
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            if(in != null){
                try{
                    fs.close();
                }catch(IOException e){
                    e.printStackTrace();
                }
            }
        }
    }
}

实验截图

实验2

实验代码

package com.wjw.hadoop;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import org.apache.hadoop.fs.FsUrlStreamHandlerFactory;
import org.apache.hadoop.io.IOUtils;
public class FileCat01 {
    static{
      URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());
     }
  public static void main(String[] args) {
    // TODO Auto-generated method stub
    String arg = "hdfs://master:9000/wjw02.txt";
      InputStream in = null;
      try{
          in = new URL(arg).openStream();
          IOUtils.copyBytes(in, System.out, 2048, false);
          }catch(IOException e){
            e.printStackTrace();
          }finally{
            IOUtils.closeStream(in);
          }
    }
}

实验截图

实验3

实验代码

package com.wjw.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
public class FileSystemCat02 {
    public static void main(String[] args) {
        // TODO Auto-generated method stub
    args = new String[2];
    args[0] = "hdfs://master:9000/wjw03.txt";
    args[1] = "hdfs://master:9000/wjw04.txt";
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://master:9000");
    for(int i=0; i < args.length; i++){
        FileSystem fs = null;
        FSDataInputStream in =null;
        try{
            fs = FileSystem.get(conf);
            in = fs.open(new Path(args[i]));
            IOUtils.copyBytes(in, System.out, 4096, false);
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            if(in != null){
                try{
                    fs.close();
                }catch(IOException e){
                    e.printStackTrace();
                }
            }
        }
    }
    }
}

实验截图

实验4

实验代码

package com.wjw.hadoop;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import org.apache.hadoop.fs.FsUrlStreamHandlerFactory;
import org.apache.hadoop.io.IOUtils;
public class FileCat02 {
    static{
      URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());
     }
  public static void main(String[] args) {
    // TODO Auto-generated method stub
    args = new String[2];
    args[0] = "hdfs://master:9000/wjw03.txt";
    args[1] = "hdfs://master:9000/wjw04.txt";
    for(int i=0; i < args.length; i++){
          InputStream in = null;
          try{
          in = new URL(args[i]).openStream();
          IOUtils.copyBytes(in, System.out, 2048, false);
          }catch(IOException e){
            e.printStackTrace();
          }finally{
            IOUtils.closeStream(in);
          }
    }
  }
}

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
打赏
0
0
0
0
192
分享
相关文章
Java 大数据在智能教育在线实验室设备管理与实验资源优化配置中的应用实践
本文探讨Java大数据技术在智能教育在线实验室设备管理与资源优化中的应用。通过统一接入异构设备、构建四层实时处理管道及安全防护双体系,显著提升设备利用率与实验效率。某“双一流”高校实践显示,设备利用率从41%升至89%,等待时间缩短78%。该方案降低管理成本,为教育数字化转型提供技术支持。
50 0
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
大数据在电子健康记录中的潜力与挑战:一次技术和伦理的深度碰撞
大数据在电子健康记录中的潜力与挑战:一次技术和伦理的深度碰撞
105 12
大数据项目成功的秘诀——不只是技术,更是方法论!
大数据项目成功的秘诀——不只是技术,更是方法论!
110 8
大数据项目成功的秘诀——不只是技术,更是方法论!
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
231 79
随着云计算和大数据技术的发展,Hyper-V在虚拟化领域的地位日益凸显
随着云计算和大数据技术的发展,Hyper-V在虚拟化领域的地位日益凸显。作为Windows Server的核心组件,Hyper-V具备卓越的技术性能,支持高可用性、动态迁移等功能,确保虚拟机稳定高效运行。它与Windows深度集成,管理便捷,支持远程管理和自动化部署,降低管理成本。内置防火墙、RBAC等安全功能,提供全方位安全保障。作为内置组件,Hyper-V无需额外购买软件,降低成本。其广泛的生态系统支持和持续增长的市场需求,使其成为企业虚拟化解决方案的首选。
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
46 1
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与分析技术(171)
本文围绕 Java 大数据在智能安防入侵检测系统中的应用展开,剖析系统现状与挑战,阐释多源数据融合及分析技术,结合案例与代码给出实操方案,提升入侵检测效能。
数据科学 vs. 大数据:一场“烧脑”但有温度的较量
数据科学 vs. 大数据:一场“烧脑”但有温度的较量
126 2
数据与生命的对话:当大数据遇上生物信息学
数据与生命的对话:当大数据遇上生物信息学
101 17
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等