3.数组算法、动态规划

简介: 3.数组算法、动态规划

数组算法

Array是一个容器,可以容纳固定数量的项目,这些项目应该是相同的类型。大多数数据结构都使用数组来实现其算法。以下是理解Array概念的重要术语。

  • 元素 - 存储在数组中的每个项称为元素。
  • 索引 - 数组中元素的每个位置都有一个数字索引,用于标识元素。

1.数组表示

可以使用不同语言以各种方式声明数组。为了说明,我们采取C数组声明。

可以使用不同语言以各种方式声明数组。为了说明,我们采取C数组声明。

根据以上说明,以下是要考虑的重点。

  • 索引从0开始。
  • 数组长度为10,这意味着它可以存储10个元素。
  • 可以通过索引访问每个元素。例如,我们可以将索引6处的元素提取为9。

2.基本操作

以下是数组支持的基本操作。

  • 遍历 - 逐个打印所有数组元素。
  • 插入 - 在给定索引处添加元素。
  • 删除 - 删除给定索引处的元素。
  • 搜索 - 使用给定索引或值搜索元素。
  • 更新 - 更新给定索引处的元素。

在C中,当使用size初始化数组时,它会按以下顺序为其元素分配默认值。

数据类型 默认值
布尔
烧焦 0
INT 0
浮动 0.0
0.0F
空虚
wchar_t的 0

3.插入操作

插入操作是将一个或多个数据元素插入到数组中。根据需求,可以在开头,结尾或任何给定的数组索引处添加新元素。

在这里,我们看到插入操作的实际实现,我们在数组的末尾添加数据 -

算法

ArrayMAX 元素的线性无序数组。

实例1

结果

LA 是一个线性阵列(无序的)与 Ñ 元件和 ķ 是一个正整数,使得 ķ <= N。以下是将ITEM插入洛杉矶第 K 个位置的算法-

1. Start
2. Set J = N
3. Set N = N+1
4. Repeat steps 5 and 6 while J >= K
5. Set LA[J+1] = LA[J]
6. Set J = J-1
7. Set LA[K] = ITEM
8. Stop

实例2

以下是上述算法的实现 -

#include <stdio.h>
main() {
   int LA[] = {1,3,5,7,8};
   int item = 10, k = 3, n = 5;
   int i = 0, j = n;
   printf("The original array elements are :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
   n = n + 1;
   while( j >= k) {
      LA[j+1] = LA[j];
      j = j - 1;
   }
   LA[k] = item;
   printf("The array elements after insertion :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
}

当我们编译并执行上述程序时,它会产生以下结果 -

输出

The original array elements are :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after insertion :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 10
LA[4] = 7
LA[5] = 8

3.删除操作

删除是指从数组中删除现有元素并重新组织数组的所有元素。

算法

考虑 LA 是一个线性阵列 Ñ 元件和 ķ 是一个正整数,使得 ķ <= N。以下是删除在LA的第 K 个位置可用的元素的算法。

1. Start
2. Set J = K
3. Repeat steps 4 and 5 while J < N
4. Set LA[J] = LA[J + 1]
5. Set J = J+1
6. Set N = N-1
7. Stop

实例1

以下是上述算法的实现

#include <stdio.h>
void main() {
   int LA[] = {1,3,5,7,8};
   int k = 3, n = 5;
   int i, j;
   printf("The original array elements are :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
   j = k;
   while( j < n) {
      LA[j-1] = LA[j];
      j = j + 1;
   }
   n = n -1;
   printf("The array elements after deletion :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
}

当我们编译并执行上述程序时,它会产生以下结果 -

输出

The original array elements are :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after deletion :
LA[0] = 1
LA[1] = 3
LA[2] = 7
LA[3] = 8

4.搜索操作

您可以根据数组元素的值或索引搜索数组元素。

算法

考虑 LA 是一个线性阵列 Ñ 元件和 ķ 是一个正整数,使得 ķ <= N。以下是使用顺序搜索查找具有ITEM值的元素的算法。

1. Start
2. Set J = 0
3. Repeat steps 4 and 5 while J < N
4. IF LA[J] is equal ITEM THEN GOTO STEP 6
5. Set J = J +1
6. PRINT J, ITEM
7. Stop

实例2

以下是上述算法的实现

#include <stdio.h>
void main() {
   int LA[] = {1,3,5,7,8};
   int item = 5, n = 5;
   int i = 0, j = 0;
   printf("The original array elements are :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
   while( j < n){
      if( LA[j] == item ) {
         break;
      }
      j = j + 1;
   }
   printf("Found element %d at position %d\n", item, j+1);
}

当我们编译并执行上述程序时,它会产生以下结果 -

输出

The original array elements are :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
Found element 5 at position 3

5.更新操作

更新操作是指在给定索引处更新阵列中的现有元素。

算法

考虑 LA 是一个线性阵列 Ñ 元件和 ķ 是一个正整数,使得 ķ <= N。以下是更新在LA的第 K 个位置可用的元素的算法。

1. Start
2. Set LA[K-1] = ITEM
3. Stop

实3例

以下是上述算法的实现 -

#include <stdio.h>
void main() {
   int LA[] = {1,3,5,7,8};
   int k = 3, n = 5, item = 10;
   int i, j;
   printf("The original array elements are :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
   LA[k-1] = item;
   printf("The array elements after updation :\n");
   for(i = 0; i<n; i++) {
      printf("LA[%d] = %d \n", i, LA[i]);
   }
}

当我们编译并执行上述程序时,它会产生以下结果 -

输出

The original array elements are :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after updation :
LA[0] = 1
LA[1] = 3
LA[2] = 10
LA[3] = 7
LA[4] = 8

2.动态规划

动态编程方法类似于将问题分解为更小但更小的子问题的分而治之。但不同的是,分而治之,这些子问题并没有独立解决。相反,记住这些较小子问题的结果并用于类似或重叠的子问题。

动态编程用于我们遇到问题的地方,可以将其划分为类似的子问题,以便可以重复使用它们的结果。大多数情况下,这些算法用于优化。在解决现有子问题之前,动态算法将尝试检查先前解决的子问题的结果。结合子问题的解决方案以实现最佳解决方案。

所以我们可以说 -

  • 该问题应该能够分成较小的重叠子问题。
  • 通过使用较小子问题的最佳解决方案可以实现最佳解决方案。
  • 动态算法使用Memoization。

对照

与解决局部优化的贪婪算法相反,动态算法被激励用于问题的整体优化。

与分而治之的算法相比,其中解决方案被组合以实现整体解决方案,动态算法使用较小子问题的输出,然后尝试优化更大的子问题。动态算法使用Memoization来记住已经解决的子问题的输出。

实例1

使用动态编程方法可以解决以下计算机问题 -

  • 斐波纳契数系列
  • 背包问题
  • 河内塔
  • 由Floyd-Warshall完成的所有最短路径
  • Dijkstra的最短路径
  • 项目安排

动态编程可以自上而下和自下而上的方式使用。当然,大多数情况下,参考之前的解决方案输出比CPU周期重新计算更便宜。

相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
84 1
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
3月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
48 0
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
64 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
115 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
54 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
83 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
194 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
31 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
3月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)

热门文章

最新文章