【数据结构】二叉树链式结构的实现(三)

简介: 【数据结构】二叉树链式结构的实现(三)

一,二叉树的链式结构

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系;

通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。

链式结构又分为二叉链和三叉链,这里我们学习二叉链;

二叉树是:

1,空树

2,非空:根节点,根节点的左子树、根节点的右子树组成的。

从图示中可以看出,二叉树定义是递归式的也称递归树,因此后序基本操作中基本都是按照该概念实现的;

二叉链结构图示;

二,二叉链的接口实现

       1,二叉链的创建

typedef int BTDataType;
//二叉链
typedef struct BinaryTreeNode
{
  BTDataType data; // 当前结点值域  
  struct BinaryTreeNode* left; // 指向当前结点左孩子
  struct BinaryTreeNode* right; // 指向当前结点右孩子
}BTNode;

首先创建一个结构体表示二叉链data是当前结点的值域,BTDataType是储存的值的数据类型;

left是指向当前结点左孩子right是指向当前结点右孩子

这里的BTDataTypeint的重命名,也可以说是数据类型的重命名,这样统一化方便后续更改;

      2,接口函数

//动态创立新结点
BTNode* BuyNode(BTDataType x);
//创建二叉树
BTNode* GreatBTree();
//前序遍历
void PrevOrder(BTNode* root);
//中序遍历
void InOrder(BTNode* root);
//后序遍历
void PostOrder(BTNode* root);

这是以上要实现的接口函数;

       3,动态创立新结点

//动态创立新结点
BTNode* BuyNode(BTDataType x)
{
  BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
  assert(newnode);
  newnode->data = x;
  newnode->left = NULL;
  newnode->right = NULL;
  return newnode;
}

后面创立新结点时直接调用此函数,一定要向堆区申请空间,这样函数结束空间会保留不会被回收;

data赋新值,leftright都指向空,再返回结点指针即可;

       4,创建二叉树

//创建二叉树
BTNode* GreatBTree()
{
  BTNode* node1 = BuyNode(1);
  BTNode* node2 = BuyNode(2);
  BTNode* node3 = BuyNode(3);
  BTNode* node4 = BuyNode(4);
  BTNode* node5 = BuyNode(5);
  BTNode* node6 = BuyNode(6);
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  node4->left = node5;
  node4->right = node6;
  return node1;
}

然后我们申请结点来构造二叉树,通过链接将新结点链接起来;

创建的二叉树结构图示如下:

       5,前序遍历

//前序遍历
void PrevOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }
  printf("%d ", root->data);
  PrevOrder(root->left);
  PrevOrder(root->right);
}

二叉树的前序,中序,后续遍历都是同一种思路:

1. 前序遍历(Preorder Traversal 亦称先序遍历)——根结点---->左子树--->右子树


2. 中序遍历(Inorder Traversal)——左子树--->根结点--->右子树


3. 后序遍历(Postorder Traversal)——左子树--->右子树--->根结点


这里要用到递归思想:这里NULLN表示,建议画图来理解,一层一层遍历下去;

前序遍历:

先访问根结点(1)然后访问其左子树(2)打印 1

此时根结点为(2)然后访问其左子树(3)打印1 2

此时根结点为(3)然后访问其左子树(NULL)打印1 2 3

此时根结点为(NULL)return NULL到(3),然后访问(3)的右子树(NULL)打印1 2 3 N

此时根结点为(NULL)return NULL到(3),此此时对(3)也就是对(2)的左子树的访问结束了,然后访问(2)的右子树(NULL);打印1 2 3 N N

此时根结点为(NULL)return NULL到(2),此时对(2)也就是对(1)的左子树访问结束了,然后访问(1)的右子树(4)打印1 2 3 N N N

此时根结点为(4)然后访问其左子树(5)打印1 2 3 N N N 4

此时根结点为(5)然后访问其左子树(NULL)打印1 2 3 N N N 4 5

此时根结点为(NULL)return NULL到(5)然后访问(5)的右子树(NULL)打印1 2 3 N N N 4 5 N

此时根结点为(NULL)return NULL到(5)此时对(5)也就是对(4)的左子树的访问结束了,然后访问(4)的右子树(6)打印 1 2 3 N N N 4 5 N N

此时根结点为(6)然后访问其左子树(NULL)打印1 2 3 N N N 4 5 N N 6

此时根结点为(NULL)return NULL到(6)然后访问(6)的右子树(NULL)打印1 2 3 N N N 4 5 N N 6 N

此时根结点为(NULL)return NULL到(6),此时对(6)也就是对(4)的右子树的访问结束了,此时对(4)也就是对(1)的右子树的访问结束了,此时对(1)的访问也结束了,前序遍历也就结束了;打印1 2 3 N N N 4 5 N N 6 N N

图解思路示例:

BTNode* root = GreatBTree();
//前序遍历
PrevOrder(root);

这就是前序遍历;

       6,中序遍历

//中序遍历
void InOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }
  InOrder(root->left);
  printf("%d ", root->data);
  InOrder(root->right);
}

中序遍历:左子树--->根结点--->右子树

跟前序遍历思路一致,就是换了一下访问的顺序,按照前序遍历的思路来就完事了;

//中序遍历
InOrder(root);
printf("\n");

       7,后序遍历

//后序遍历
void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }
  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->data);
}

后序遍历:左子树--->右子树--->根结点

思路还是一致的,就是换了一下访问顺序,前,中,后序遍历的思路都是一致的,只要搞清楚其中一个就全部拿捏了;

//后续遍历
PostOrder(root);
printf("\n");

这里对二叉链的基础遍历就实现完全了,有人说还有一个层序遍历,这个遍历需要用到队列,目前C语言阶段实现太过于繁琐,后序博主会补上;

三,结点个数以及高度等

像此类问题也都是递归问题,更加看重我们对函数栈帧的理解;

       1,接口函数

//结点个数
int SumNode(BTNode* root);
//叶子结点个数
int LeafNode(BTNode* root);
//二叉树高度
int HeightTree(BTNode* root);
//二叉树第k层结点个数
int BTreeLeveSize(BTNode* root, int k);
//二叉树查找值为x的结点
BTNode* BTreeFine(BTNode* root, int x);

以上是要实现的函数;

       2,结点个数

//结点个数
int SumNode(BTNode* root)
{
  return root == NULL ? 0 : SumNode(root->left) + SumNode(root->right) + 1;
}

递归其实说难也难,说不难也不难,是有技巧在里面的;

1,大事化小:根结点为(1)的二叉树的结点总和==>左子树(2)的结点总和加上右子树(4)的结点总和再加上本身的结点个数1,然后根结点为(2)的结点总和==>左子树(3)的总和加上NULL1,这就是规律;【(1)=(2)+(4)+1 】

2,结束条件,当结点为NULL时返回0

//结点个数
printf("%d\n", SumNode(root));

       3,叶子结点个数

//叶子结点个数
int LeafNode(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  if (root->left==NULL && root->right==NULL)
  {
    return 1;
  }
  else
  {
    return LeafNode(root->left) + LeafNode(root->right);
  }
}

大事化小:求根结点为(1)的二叉树的叶子节点的个数==>其左子树(2)加上其右子树(4)的叶子节点的个数;【(1)=(2)+(4)

结束条件:当结点为NULL时返回0,当结点的左右子树都为NULL时返回1;

       4,二叉树高度

//二叉树高度
int HeightTree(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  int left = HeightTree(root->left);
  int right = HeightTree(root->right);
  return left > right ? left + 1 : right + 1;
}

大事化小:求根结点为(1)的二叉树的高度==>其左子树(2)与右子树(4)中高的一颗的高度加上本身的高度1;【(1)=(2)>(4)?(2)+1:(4)+1 】

结束条件:当结点为NULL时返回0;

//二叉树高度
printf("%d\n", HeightTree(root));

       5,二叉树第k层结点个数

//二叉树第k层结点个数
int BTreeLeveSize(BTNode* root, int k)
{
  if (root == NULL)
  {
    return 0;
  }
  if (k == 1)
  {
    return 1;
  }
  return BTreeLeveSize(root->left, k - 1)  + BTreeLeveSize(root->right, k - 1);
}

大事化小:求根结点为(1)的二叉树第K层的结点个数==>其左子树(2)加上右子树(4)中第K-1层结点的个数;【(1)=(2)+(4)

结束条件:当结点为NULL时返回0,K等于1时返回1;

//二叉树第k层结点个数
printf("%d\n", BTreeLeveSize(root,3));

       6,二叉树查找值为x的结点

//二叉树查找值为x的结点
BTNode* BTreeFine(BTNode* root, int x)
{
  if (root == NULL)
  {
    return NULL;
  }
  if (root->data == x)
  {
    return root;
  }
  if (BTreeFine(root->left, x) == NULL)
  {
    return BTreeFine(root->right, x);
  }
  else
  {
    return BTreeFine(root->left, x);
  }
}

大事化小:查找根结点为(1)的二叉树中值为x的结点==>查找其左子树(2)与右子树(4)中值为x的结点;

结束条件:当结点为NULL时返回NULL当结点的值为x时返回该结点;

思路:所以当其中一个子树不为NULL时就是所求的结点,如果左子树不为空则返回左子树的结点,否则返回右子树的结点,如果左右都为空那也返回右子树的结点;

//二叉树查找值为x的结点
BTNode* ret = BTreeFine(root, 6);
printf("%d\n", ret->data);
ret = BTreeFine(root, 3);
printf("%d\n", ret->data);

到这里就结束了,通过这些题目也充分的认识了二叉树(递归树),这就是递归算法,还是要多画图来理解,递归基层的知识就是函数栈帧的创建与销毁

第三阶段就到这里了,这阶段带大家了解一下二叉树(递归树)的递归思想;

后面博主会陆续更新;

如有不足之处欢迎来补充交流!

完结。。

目录
相关文章
|
2天前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
29 12
|
2天前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
27 10
|
3天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
17 2
|
17天前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
2月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
108 4
|
2月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
113 16
|
2月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
153 8
|
3月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
37 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
3月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
44 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
3月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆