Python操作Numpy模块库

简介: Python操作Numpy模块库

14天学习训练营导师课程:

杨鑫《Python 自学编程基础》

杨鑫《 Python 网络爬虫基础》

杨鑫《 Scrapy 爬虫框架实战和项目管理》


杨老师推荐自学Python的网站

w3schools

传送门

geeksforgeeks

传送门

realpython

传送门

引用杨老师说的:
中文的这里不推荐,因为很多机构的翻译水品参差不齐,直接看英文的自己学吧,这个能快速的提升你的技能水平,
不光是编程,还有英语。
你可能会问为什么不推荐书籍,因为书籍的时效性太低了,可能出版之后版本都换了好几轮了,
很多里面的代码都跑不通,具体为什么里也不会给你说,所以直接看网站的教程是最好的选择。

1.Numpy介绍

numpy官方文档介绍

Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展

Numpy是高性能科学计算和数据分析的基础包。它也是pandas等其他数据分析的工具的基础,基本所有数据分析的包都用过它。NumPy为Python带来了真正的多维数组功能,并且提供了丰富的函数库处理这些数组。它将常用的数学函数都支持向量化运算,使得这些数学函数能够直接对数组进行操作

2.Numpy安装

  1. window电脑点击win键+R,输入:cmd

2.安装 numpy,pip 命令安装 ,我们使用豆瓣的镜像源来安装

pip install numpy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
• 1

3.导包

import numpy as np

3.Numpy模块练习

numpy数组即numpy的ndarray对象,创建numpy数组就是把一个列表传入np.array()方法。

3.1 创建数组

创建一维、二维、三维ndarray对象

# @Time     : 2022/11/24 19:25
# @Author   : hyh
# @File     : Numpy模块练习.py
# @Software : PyCharm
import numpy as np
# np.array? 相当于pycharm的ctrl+鼠标左键
# 创建一维的ndarray对象
arr = np.array([1, 2, 3])
print(arr, type(arr))
# 创建二维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6]]))
# 创建三维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))

执行结果:

3.2 获取数组

由于numpy数组是多维的,对于二维的数组而言,numpy数组就是既有行又有列。

注意:对于numpy我们一般多讨论二维的数组。

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
# 获取numpy数组的行和列构成的数组
print(arr.shape)
# 获取numpy数组的行
print(arr.shape[0])
# 获取numpy数组的列
print(arr.shape[1])

执行结果:

[[1 2 3]
 [4 5 6]]
获取numpy数组的行和列构成的数组
(2, 3)
获取numpy数组的行
2
获取numpy数组的列
3

3.3 切割数组

切分numpy数组类似于列表的切割,但是与列表的切割不同的是,numpy数组的切割涉及到行和列的切割,但是两者切割的方式都是从索引0开始,并且取头不取尾。

# @Time     : 2022/11/24 19:45
# @Author   : hyh
# @File     : 切割numpy数组.py
# @Software : PyCharm
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
print('取所有元素')
# 取所有元素
print(arr[:, :])
print('取第一行的所有元素')
# 取第一行的所有元素
print(arr[:1, :])
print('取第一列的所有元素')
# 取第一列的所有元素
print(arr[:, :1])
print('取第一列的所有元素')
# 取第一列的所有元素
print(arr[(0, 1, 2), 0])
print('取第一行第一列的元素')
# 取第一行第一列的元素
print(arr[(0, 1, 2), 0])
print('取第一行第一列的元素')
# 取第一行第一列的元素
print(arr[0, 0])
print('取大于5的元素,返回一个数组')
# 取大于5的元素,返回一个数组
print(arr[arr > 5])
print('numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组')
# numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组
print(arr > 5)

执行结果:

"D:\Program Files\Python\Python36\python.exe" D:/E/PythonWork/Pytest2022/CSDN打卡/切割numpy数组.py
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
取所有元素
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
取第一行的所有元素
[[1 2 3 4]]
取第一列的所有元素
[[1]
 [5]
 [9]]
取第一列的所有元素
[1 5 9]
取第一行第一列的元素
[1 5 9]
取第一行第一列的元素
1
取大于5的元素,返回一个数组
[ 6  7  8  9 10 11 12]
numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组
[[False False False False]
 [False  True  True  True]
 [ True  True  True  True]]
Process finished with exit code 0

3.4 替换数组

numpy数组元素的替换,类似于列表元素的替换,并且numpy数组也是一个可变类型的数据,即如果对numpy数组进行替换操作,会修改原numpy数组的元素,所以下面我们用.copy()方法举例numpy数组元素的替换。

# @Time     : 2022/11/24 19:53
# @Author   : hyh
# @File     : numpy数组元素替换.py
# @Software : PyCharm
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
print('取第一行的所有元素,并且让第一行的元素都为0')
# 取第一行的所有元素,并且让第一行的元素都为0
arr1 = arr.copy()
arr1[:1, :] = 0
print(arr1)
print('取所有大于5的元素,并且让大于5的元素为0')
# 取所有大于5的元素,并且让大于5的元素为0
arr2 = arr.copy()
arr2[arr > 5] = 0
print(arr2)
print('对numpy数组清零')
# 对numpy数组清零
arr3 = arr.copy()
arr3[:, :] = 0
print(arr3)

执行结果:

"D:\Program Files\Python\Python36\python.exe" D:/E/PythonWork/Pytest2022/CSDN打卡/numpy数组元素替换.py
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
取第一行的所有元素,并且让第一行的元素都为0
[[ 0  0  0  0]
 [ 5  6  7  8]
 [ 9 10 11 12]]
取所有大于5的元素,并且让大于5的元素为0
[[1 2 3 4]
 [5 0 0 0]
 [0 0 0 0]]
对numpy数组清零
[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]
Process finished with exit code 0

3.5 合并数组

numpy数组的合并

# @Time     : 2022/11/24 20:39
# @Author   : hyh
# @File     : numpy数组合并.py
# @Software : PyCharm
import numpy as np
arr1 = np.array([[1, 2], [3, 4], [5, 6]])
print(arr1)
arr2 = np.array([[7, 8], [9, 10], [11, 12]])
print(arr2)
print('合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的')
# 合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的
print(np.hstack((arr1, arr2)))
print('合并两个numpy数组,其中axis=1表示合并两个numpy数组的行')
# 合并两个numpy数组,其中axis=1表示合并两个numpy数组的行
print(np.concatenate((arr1, arr2), axis=1))
print('合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的')
# 合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的
print(np.vstack((arr1, arr2)))
print('合并两个numpy数组,其中axis=0表示合并两个numpy数组的列')
# 合并两个numpy数组,其中axis=0表示合并两个numpy数组的列
print(np.concatenate((arr1, arr2), axis=0))

执行结果:

"D:\Program Files\Python\Python36\python.exe" D:/E/PythonWork/Pytest2022/CSDN打卡/numpy数组合并.py
[[1 2]
 [3 4]
 [5 6]]
[[ 7  8]
 [ 9 10]
 [11 12]]
合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的
[[ 1  2  7  8]
 [ 3  4  9 10]
 [ 5  6 11 12]]
合并两个numpy数组,其中axis=1表示合并两个numpy数组的行
[[ 1  2  7  8]
 [ 3  4  9 10]
 [ 5  6 11 12]]
合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]
 [11 12]]
合并两个numpy数组,其中axis=0表示合并两个numpy数组的列
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]
 [11 12]]
Process finished with exit code 0

3.6 numpy数组的常用属性

属性 解释
T 数组的转置(对高维数组而言)
dtype 数组元素的数据类型
size 数组元素的数据类型
ndim 数组的维数
shape 数组的维度大小(以元组形式)
astype 类型转换
相关文章
|
18天前
|
Python
Python Internet 模块
Python Internet 模块。
118 74
|
22天前
|
XML JSON 数据库
Python的标准库
Python的标准库
161 77
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
118 63
|
2月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
2月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
98 4
数据分析的 10 个最佳 Python 库
|
23天前
|
XML JSON 数据库
Python的标准库
Python的标准库
47 11
|
2月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
129 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
23天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
64 8
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
35 4