【Python查找算法】二分查找、线性查找、哈希查找

简介: 【Python查找算法】二分查找、线性查找、哈希查找

1 二分查找算法

     二分查找(Binary Search)是一种用于在有序数据集合中查找特定元素的高效算法。它的工作原理基于将数据集合分成两半,然后逐步缩小搜索范围,直到找到目标元素或确定目标元素不存在。

以下是二分查找的工作原理的详细说明:

  1. 有序数据集合:首先,数据集合必须是有序的,通常是按升序或降序排列的。这一点非常重要,因为二分查找的核心思想是根据中间元素与目标元素的大小关系来确定搜索范围。
  2. 初始化指针:初始化两个指针,一个指向数据集合的第一个元素(左指针),另一个指向最后一个元素(右指针)。
  3. 确定中间元素:计算左指针和右指针的中间位置,即 (left + right) // 2。这将确定搜索区域的中间元素。
  4. 比较中间元素:将中间元素与目标元素进行比较:

          1.如果中间元素等于目标元素,搜索成功,返回中间元素的索引。

          2.如果中间元素大于目标元素,说明目标元素应该在左半部分,将右指针移到中间元素的左侧一位,即 right = mid - 1

          3.如果中间元素小于目标元素,说明目标元素应该在右半部分,将左指针移到中间元素的右侧一位,即 left = mid + 1

  1. 重复步骤3和4:在每次比较后,缩小搜索范围,继续比较直到找到目标元素或搜索范围为空(即左指针大于右指针)。
  2. 返回结果:如果找到目标元素,返回它的索引;如果搜索范围为空仍未找到目标元素,返回一个指示未找到的值(通常是 -1)。

以下是一个简单的示例,演示如何使用二分查找在有序数组中查找目标元素:

def binary_search(arr, target):
    left, right = 0, len(arr) - 1  # 初始化左右指针,分别指向数组的起始和结束位置
    while left <= right:  # 当左指针不大于右指针时,继续搜索
        mid = (left + right) // 2  # 计算中间位置
        if arr[mid] == target:  # 如果中间元素等于目标元素,搜索成功
            return mid  # 返回中间元素的索引
        elif arr[mid] < target:  # 如果中间元素小于目标元素,说明目标在右半部分
            left = mid + 1  # 移动左指针到中间元素的右侧一位
        else:  # 否则,目标在左半部分
            right = mid - 1  # 移动右指针到中间元素的左侧一位
    return -1  # 如果搜索范围为空仍未找到目标元素,返回 -1 表示未找到
# 示例用法
sorted_list = [1, 2, 3, 4, 7, 9]
target_element = 7
result = binary_search(sorted_list, target_element)
if result != -1:
    print(f"元素 {target_element} 在索引 {result} 处找到。")
else:
    print("元素未找到。")

上述代码演示了如何使用二分查找在有序列表 sorted_list 中查找目标元素 7。根据工作原理,二分查找的时间复杂度为 O(log n),其中 n 是数据集合的大小,这使得它非常适合在大型有序数据集合中查找目标元素。


2 线性查找算法

       线性查找(Linear Search)是一种简单的搜索算法,也称为顺序查找。它的工作原理是逐个遍历数据集合中的元素,直到找到匹配的元素或遍历整个集合。

原理:

  1. 从数据集合的第一个元素开始,逐个检查每个元素,直到找到匹配的元素或遍历整个集合。
  2. 如果找到与目标元素匹配的元素,返回该元素的索引(位置)。
  3. 如果遍历整个集合都没有找到匹配的元素,返回特定的“未找到”值(通常是 -1)。

以下是线性查找的原理示例:

数据集合: [2, 4, 7, 1, 9, 3]
要查找的元素: 7
初始状态:
[2, 4, 7, 1, 9, 3]
 ^
第一次比较:元素 2 与目标 7 不匹配,继续下一个元素。
[2, 4, 7, 1, 9, 3]
    ^
第二次比较:元素 4 与目标 7 不匹配,继续下一个元素。
[2, 4, 7, 1, 9, 3]
       ^
第三次比较:元素 7 与目标 7 匹配,找到了目标元素。
[2, 4, 7, 1, 9, 3]
          ^
目标元素 7 找到在索引 2 处。

       上述示意图演示了如何使用线性查找在给定的数据集合中查找目标元素 7。算法从数据集合的第一个元素开始逐个比较,直到找到匹配的元素或遍历整个集合。

       这个示意图反映了线性查找的工作原理,即逐个遍历数据元素以寻找匹配项。如果目标元素存在于数据集合中,线性查找将找到该元素的索引。如果目标元素不存在,则遍历整个数据集合后返回特定的未找到值(通常是 -1)。

以下是一个Python线性查找示例代码:

def linear_search(arr, target):
    """
    线性查找函数
    Parameters:
    - arr: 待查找的列表
    - target: 要查找的目标元素
    Returns:
    - 如果找到目标元素,返回其索引;否则返回 -1。
    """
    for i in range(len(arr)):  # 遍历列表中的每个元素
        if arr[i] == target:  # 如果当前元素与目标元素匹配
            return i  # 返回匹配元素的索引
    return -1  # 如果遍历完整个列表未找到匹配元素,返回 -1 表示未找到
# 示例用法
my_list = [2, 4, 7, 1, 9, 3]
target_element = 7
result = linear_search(my_list, target_element)  # 调用线性查找函数
if result != -1:
    print(f"元素 {target_element} 在索引 {result} 处找到。")
else:
    print("元素未找到。")

       在上述代码中,linear_search 函数用于执行线性查找。它接受两个参数:要查找的列表 arr 和目标元素 target。函数逐个遍历列表中的元素,如果找到匹配的元素,则返回匹配元素的索引;如果遍历完整个列表都没有找到匹配元素,则返回 -1 表示未找到。


3 哈希查找算法

       哈希查找(Hash Search)是一种高效的搜索算法,它利用哈希函数将键映射到存储位置,并在该位置查找目标元素。哈希查找适用于快速查找和检索,特别适用于大型数据集合。以下是哈希查找的详细解释和示例:

工作原理:

  1. 哈希表:哈希查找的核心是哈希表,它是一个数据结构,由键-值对组成。哈希表内部使用哈希函数将键转换为存储位置(索引),然后将键和值存储在该位置。
  2. 哈希函数:哈希函数接受一个键作为输入,并生成一个索引(位置),通常是一个整数。好的哈希函数应该具有以下特性:

          1.对于相同的输入键,始终生成相同的索引。

          2.将不同的输入键均匀地映射到不同的索引,以减少冲突。

          3.生成的索引应尽可能分散,以降低冲突的可能性。

  1. 查找过程:要查找目标元素,哈希函数首先计算目标元素的哈希值(索引),然后在哈希表的该位置查找对应的值。如果找到匹配的值,查找成功;否则,表示未找到目标元素。

示例代码:

以下是一个使用Python的哈希查找示例代码,我们将使用字典作为哈希表来演示:

# 创建一个哈希表(字典)
my_dict = {'apple': 3, 'banana': 2, 'cherry': 5, 'date': 1, 'grape': 4}
# 要查找的目标键
target_key = 'banana'
# 使用哈希查找
if target_key in my_dict:
    value = my_dict[target_key]
    print(f"The value of {target_key} is {value}")
else:
    print(f"{target_key} not found")

       在上述示例中,我们首先创建了一个哈希表 my_dict,其中包含键-值对。然后,我们定义了要查找的目标键 target_key 为 'banana'。通过使用哈希查找,我们可以直接访问哈希表中的值,而不需要逐个遍历整个集合。如果目标键存在于哈希表中,我们将获得与该键关联的值。

       请注意,哈希查找的效率非常高,因为它通常具有常量时间复杂度 O(1)。然而,哈希函数的设计和解决冲突的方法对算法的性能至关重要。合适的哈希函数和处理冲突的方法可以确保高效的哈希查找。


4 应用

线性查找(Linear Search):

  • 工作原理:逐个遍历数据集合,查找目标元素。
  • 应用:适用于小型无序数据集合,或当数据无序且不频繁查找时。常见于简单的列表或数组。

二分查找(Binary Search):

  • 工作原理:适用于有序数据集合,将数据集合分成两半,逐步缩小搜索范围。
  • 应用:适用于大型有序数据集合,如数组或有序列表。常见于数据库索引等高效查找场景。

哈希查找(Hash Search):

  • 工作原理:通过哈希函数将键映射到存储位置,查找时直接访问该位置。
  • 应用:适用于快速查找,如字典、散列表(哈希表)等数据结构。常用于处理大量数据的快速索引。

二叉搜索树查找(Binary Search Tree Search):

  • 工作原理:通过二叉搜索树的有序性,在左子树或右子树中查找目标元素。
  • 应用:适用于维护有序数据集合,如数据库索引、字典实现等
目录
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
58 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
283 55
|
22天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
117 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
147 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
139 61
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
188 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
19天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
23天前
|
算法 索引
【算法】——二分查找合集
二分查找基础模版和进阶模版,查找元素位置,搜索插入位置,x的平方根,山脉数组的峰顶索引,寻找峰值,点名
|
24天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
50 5
|
1月前
|
算法 安全
散列值使用相同的哈希算法
当使用相同的哈希算法对相同的数据进行散列时,所产生的散列值(也称为哈希值或摘要)总是相同的。这是因为哈希算法是一种确定性的函数,它对于给定的输入将始终产生相同的输出。 例如,如果你用SHA-256算法对字符串"hello world"进行哈希处理,无论何时何地,只要输入是完全一样的字符串,你都会得到相同的160位(40个十六进制字符)的SHA-256散列值。 但是,需要注意的是,即使是输入数据的微小变化也会导致产生的散列值完全不同。此外,不同的哈希算法(如MD5、SHA-1、SHA-256等)会对相同的数据产生不同的散列值。 哈希算法的一个关键特性是它们的“雪崩效应”,即输入中的一点小小
40 4