如何寻找论文及其相关代码?

简介: 如何寻找论文及其相关代码?

如何寻找论文及其相关代码?


文章目录

专业的论文网站

Papers with Code

官方网址:https://paperswithcode.com

这是 Reddit 的一个用户 rstoj 做的一个网站,将 ArXiv 上的最新机器学习论文与 Github 上的代码(TensorFlow/PyTorch/MXNet/等)对应起来。

有关联代码,非常的nice!而且界面也很好,推荐指数:⭐⭐⭐⭐⭐

Browse state-of-the-art

官方网址:https://paperswithcode.com/sota

这个网站主要是解决另一个问题——寻找一个领域目前最好的(State of the art, Sota)算法的论文以及实现代码,也算是paperswithcode下的一个子模块,相关需求的同学帮助非常打,推荐指数:⭐⭐⭐⭐。

这也是刚接触到一个新领域时候,必须要做的事情,先找到最新最好的算法论文,然后根据这篇论文的代码实现,先跑下代码,接着再去了解细节,或者是根据它的参考论文,来学习这个领域最近几年的论文(一般是 3 年到 5 年内的),逐渐熟悉这个领域的研究方向和难点所在。

arxiv

官方网址:https://arxiv.org/

arXiv是一个向任何人开放的策划研究共享平台。作为数字开放获取的先驱,目前在八个主题领域拥有200多万篇学术文章,由我们强大的志愿者版主社区策划。arXiv为研究人员提供广泛的服务:文章提交,编译,生产,检索,搜索和发现,人类读者的Web分发,机器的API访问,以及内容管理和保存。我们对开放性、协作性和学术性的重视为arXiv的蓬勃发展奠定了坚实的基础。arXiv目前服务于物理,数学,计算机科学,定量生物学,定量金融,统计学,电气工程和系统科学以及经济学等领域。arXiv由Paul Ginsparg于1991年创立,现在由康奈尔理工学院维护和运营。

专业性很强,但是页面不够没观,有的没有其他资料,只有PDF,找论文指数:⭐⭐⭐⭐⭐,代码推荐指数:⭐⭐⭐

Google学术:

Google学术搜索:https://code.google.com/archive/

没玩明白,推荐指数:⭐⭐

ResearchCode

官方地址:https://researchcode.com/

一个很好用的查找论文代码的网站,当您在https://arxiv.org/或Google Scholar中搜索浏览论文时,还可以用http://researchcode.com提供的google chrome扩展程序”ResearchCode code finder“查找代码。

推荐指数:⭐⭐⭐⭐

CatalyzeX

官方地址:https://www.catalyzex.com/

CatalyzeX可以方便快速找论文代码,还可以直观看到论文代码是否开源,也可以下载插件方便使用

Code Ocean

官方地址:https://codeocean.com/

Code Ocean用于创建、共享、发布、保存和重用可执行代码和数据的集中式平台。借助Code Ocean,研究人员可以轻松地分析、组织和执行研究工作,并将其发表到机构库和期刊中,推荐指数:⭐⭐⭐⭐。

ReadPaper

ReadPaper是论文阅读管理工具,理工科科研人的专属福音

推荐指数:⭐⭐⭐⭐⭐

GitHub

挺好的,不用多说。

直接搜有技巧或者知道作者容易搜索一些,直接搜论文名比较难,推荐指数:⭐⭐⭐⭐,会查的推荐指数:⭐⭐⭐⭐⭐

知乎/csdn

找到自己要用的论文的解析,通常博主会关联相关的代码地址(不过现在这环境大部分是不会了😅😅😅)。

推荐指数:⭐


相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
【传知代码】transformer-论文复现
Transformer模型,革新NLP的里程碑,摒弃CNN/RNN,采用自注意力机制解决长距离依赖问题,加速训练。模型包含编码器和解码器,用位置编码补充序列信息。关键组件包括:嵌入层(位置编码增强词向量)、多头注意力层(捕获不同侧面的上下文)、前馈层(非线性变换)及残差连接和层归一化(提升训练稳定性)。Transformer的创新应用,推动了现代大语言模型的发展。
171 1
【传知代码】transformer-论文复现
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
【传知代码】BERT论文解读及情感分类实战-论文复现
本文介绍了BERT模型的架构和技术细节,包括双向编码器、预训练任务(掩码语言模型和下一句预测)以及模型微调。文章还提供了使用BERT在IMDB数据集上进行情感分类的实战,包括数据集处理、模型训练和评估,测试集准确率超过93%。BERT是基于Transformer的预训练模型,适用于多种NLP任务。在实践中,BERT模型加载预训练权重,对输入数据进行预处理,然后通过微调适应情感分类任务。
406 0
【传知代码】BERT论文解读及情感分类实战-论文复现
|
机器学习/深度学习 编解码 算法
经典神经网络论文超详细解读(四)——InceptionV2-V3学习笔记(翻译+精读+代码复现)
经典神经网络论文超详细解读(四)——InceptionV2-V3学习笔记(翻译+精读+代码复现)
216 0
经典神经网络论文超详细解读(四)——InceptionV2-V3学习笔记(翻译+精读+代码复现)
|
机器学习/深度学习 自然语言处理 算法
【论文】SimCLS:一个简单的框架 摘要总结的对比学习(1)
【论文】SimCLS:一个简单的框架 摘要总结的对比学习(1)
98 0
|
机器学习/深度学习 编解码 算法框架/工具
经典神经网络论文超详细解读(八)——ResNeXt学习笔记(翻译+精读+代码复现)
经典神经网络论文超详细解读(八)——ResNeXt学习笔记(翻译+精读+代码复现)
707 1
经典神经网络论文超详细解读(八)——ResNeXt学习笔记(翻译+精读+代码复现)
【论文】论文中参考文献的引用
【论文】论文中参考文献的引用
286 0
|
算法 搜索推荐 Windows
ExpandRank论文解读
ExpandRank是出自北京大学2008年的老论文,其实现思想为:现有的单文档关键字短语提取方法通常只使用指定文档中包含的信息。
79 0
|
内存技术
WBL论文解析
WBL论文解析
117 0
|
索引
【Pytorch--代码技巧】各种论文代码常见技巧
博主在阅读论文原代码的时候常常看见一些没有见过的代码技巧,特此将这些内容进行汇总
178 0
|
机器学习/深度学习 人工智能 自然语言处理
图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次
图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次
131 0

热门文章

最新文章