数仓学习---13、报表数据导出

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 数仓学习---13、报表数据导出

                                                                                   

                       星光下的赶路人star的个人主页

                      知世故而不世故 是善良的成熟


文章目录



一、报表数据导出


为方便报表应用使用数据,需将ads各指标的统计结果导出到MySQL数据库中


1.1 MySQL建库建表


1.1.1 创建数据库


CREATE DATABASE IF NOT EXISTS gmall_report DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
• 1


1.1.2 创建表


1、各活动补贴率

DROP TABLE IF EXISTS `ads_activity_stats`;
CREATE TABLE `ads_activity_stats`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `activity_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '活动ID',
  `activity_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '活动名称',
  `start_date` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '活动开始日期',
  `reduce_rate` decimal(16, 2) NULL DEFAULT NULL COMMENT '补贴率',
  PRIMARY KEY (`dt`, `activity_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '活动统计' ROW_FORMAT = Dynamic;```
2、各优惠券补贴率
```sql
DROP TABLE IF EXISTS `ads_coupon_stats`;
CREATE TABLE `ads_coupon_stats`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `coupon_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '优惠券ID',
  `coupon_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '优惠券名称',
  `start_date` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '发布日期',
  `rule_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '优惠规则,例如满100元减10元',
  `reduce_rate` decimal(16, 2) NULL DEFAULT NULL COMMENT '补贴率',
  PRIMARY KEY (`dt`, `coupon_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '优惠券统计' ROW_FORMAT = Dynamic;

3、新增交易用户统计

DROP TABLE IF EXISTS `ads_new_buyer_stats`;
CREATE TABLE `ads_new_buyer_stats`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `new_order_user_count` bigint(20) NULL DEFAULT NULL COMMENT '新增下单人数',
  `new_payment_user_count` bigint(20) NULL DEFAULT NULL COMMENT '新增支付人数',
  PRIMARY KEY (`dt`, `recent_days`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '新增交易用户统计' ROW_FORMAT = Dynamic;

4、各省份订单统计

DROP TABLE IF EXISTS `ads_order_by_province`;
CREATE TABLE `ads_order_by_province`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `province_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '省份ID',
  `province_name` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '省份名称',
  `area_code` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '地区编码',
  `iso_code` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '国际标准地区编码',
  `iso_code_3166_2` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '国际标准地区编码',
  `order_count` bigint(20) NULL DEFAULT NULL COMMENT '订单数',
  `order_total_amount` decimal(16, 2) NULL DEFAULT NULL COMMENT '订单金额',
  PRIMARY KEY (`dt`, `recent_days`, `province_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '各地区订单统计' ROW_FORMAT = Dynamic;

5、用户路径分析

DROP TABLE IF EXISTS `ads_page_path`;
CREATE TABLE `ads_page_path`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `source` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '跳转起始页面ID',
  `target` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '跳转终到页面ID',
  `path_count` bigint(20) NULL DEFAULT NULL COMMENT '跳转次数',
  PRIMARY KEY (`dt`, `recent_days`, `source`, `target`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '页面浏览路径分析' ROW_FORMAT = Dynamic;

6、各品牌复购率

DROP TABLE IF EXISTS `ads_repeat_purchase_by_tm`;
CREATE TABLE `ads_repeat_purchase_by_tm`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,7:最近7天,30:最近30天',
  `tm_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '品牌ID',
  `tm_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '品牌名称',
  `order_repeat_rate` decimal(16, 2) NULL DEFAULT NULL COMMENT '复购率',
  PRIMARY KEY (`dt`, `recent_days`, `tm_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '各品牌复购率统计' ROW_FORMAT = Dynamic;

7、各品类商品购物车存量TopN

DROP TABLE IF EXISTS `ads_sku_cart_num_top3_by_cate`;
CREATE TABLE `ads_sku_cart_num_top3_by_cate`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `category1_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '一级分类ID',
  `category1_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '一级分类名称',
  `category2_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '二级分类ID',
  `category2_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '二级分类名称',
  `category3_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '三级分类ID',
  `category3_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '三级分类名称',
  `sku_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '商品id',
  `sku_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品名称',
  `cart_num` bigint(20) NULL DEFAULT NULL COMMENT '购物车中商品数量',
  `rk` bigint(20) NULL DEFAULT NULL COMMENT '排名',
  PRIMARY KEY (`dt`, `sku_id`, `category1_id`, `category2_id`, `category3_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '各分类商品购物车存量Top10' ROW_FORMAT = Dynamic;

8、交易综合统计

DROP TABLE IF EXISTS `ads_trade_stats`;
CREATE TABLE `ads_trade_stats`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(255) NOT NULL COMMENT '最近天数,1:最近1日,7:最近7天,30:最近30天',
  `order_total_amount` decimal(16, 2) NULL DEFAULT NULL COMMENT '订单总额,GMV',
  `order_count` bigint(20) NULL DEFAULT NULL COMMENT '订单数',
  `order_user_count` bigint(20) NULL DEFAULT NULL COMMENT '下单人数',
  `order_refund_count` bigint(20) NULL DEFAULT NULL COMMENT '退单数',
  `order_refund_user_count` bigint(20) NULL DEFAULT NULL COMMENT '退单人数',
  PRIMARY KEY (`dt`, `recent_days`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '交易统计' ROW_FORMAT = Dynamic;

9、各品类商品交易统计

DROP TABLE IF EXISTS `ads_trade_stats_by_cate`;
CREATE TABLE `ads_trade_stats_by_cate`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `category1_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '一级分类id',
  `category1_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '一级分类名称',
  `category2_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '二级分类id',
  `category2_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '二级分类名称',
  `category3_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '三级分类id',
  `category3_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '三级分类名称',
  `order_count` bigint(20) NULL DEFAULT NULL COMMENT '订单数',
  `order_user_count` bigint(20) NULL DEFAULT NULL COMMENT '订单人数',
  `order_refund_count` bigint(20) NULL DEFAULT NULL COMMENT '退单数',
  `order_refund_user_count` bigint(20) NULL DEFAULT NULL COMMENT '退单人数',
  PRIMARY KEY (`dt`, `recent_days`, `category1_id`, `category2_id`, `category3_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '各分类商品交易统计' ROW_FORMAT = Dynamic;

10、各品牌商品交易统计

DROP TABLE IF EXISTS `ads_trade_stats_by_tm`;
CREATE TABLE `ads_trade_stats_by_tm`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `tm_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '品牌ID',
  `tm_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '品牌名称',
  `order_count` bigint(20) NULL DEFAULT NULL COMMENT '订单数',
  `order_user_count` bigint(20) NULL DEFAULT NULL COMMENT '订单人数',
  `order_refund_count` bigint(20) NULL DEFAULT NULL COMMENT '退单数',
  `order_refund_user_count` bigint(20) NULL DEFAULT NULL COMMENT '退单人数',
  PRIMARY KEY (`dt`, `recent_days`, `tm_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '各品牌商品交易统计' ROW_FORMAT = Dynamic;

11、各渠道流量统计

DROP TABLE IF EXISTS `ads_traffic_stats_by_channel`;
CREATE TABLE `ads_traffic_stats_by_channel`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `channel` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '渠道',
  `uv_count` bigint(20) NULL DEFAULT NULL COMMENT '访客人数',
  `avg_duration_sec` bigint(20) NULL DEFAULT NULL COMMENT '会话平均停留时长,单位为秒',
  `avg_page_count` bigint(20) NULL DEFAULT NULL COMMENT '会话平均浏览页面数',
  `sv_count` bigint(20) NULL DEFAULT NULL COMMENT '会话数',
  `bounce_rate` decimal(16, 2) NULL DEFAULT NULL COMMENT '跳出率',
  PRIMARY KEY (`dt`, `recent_days`, `channel`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '各渠道流量统计' ROW_FORMAT = Dynamic;

12、用户行为漏斗分析

DROP TABLE IF EXISTS `ads_user_action`;
CREATE TABLE `ads_user_action`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `home_count` bigint(20) NULL DEFAULT NULL COMMENT '浏览首页人数',
  `good_detail_count` bigint(20) NULL DEFAULT NULL COMMENT '浏览商品详情页人数',
  `cart_count` bigint(20) NULL DEFAULT NULL COMMENT '加入购物车人数',
  `order_count` bigint(20) NULL DEFAULT NULL COMMENT '下单人数',
  `payment_count` bigint(20) NULL DEFAULT NULL COMMENT '支付人数',
  PRIMARY KEY (`dt`, `recent_days`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '漏斗分析' ROW_FORMAT = Dynamic;

13、用户变动统计

DROP TABLE IF EXISTS `ads_user_change`;
CREATE TABLE `ads_user_change`  (
  `dt` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '统计日期',
  `user_churn_count` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '流失用户数',
  `user_back_count` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '回流用户数',
  PRIMARY KEY (`dt`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '用户变动统计' ROW_FORMAT = Dynamic;

14、用户留存率

DROP TABLE IF EXISTS `ads_user_retention`;
CREATE TABLE `ads_user_retention`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `create_date` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '用户新增日期',
  `retention_day` int(20) NOT NULL COMMENT '截至当前日期留存天数',
  `retention_count` bigint(20) NULL DEFAULT NULL COMMENT '留存用户数量',
  `new_user_count` bigint(20) NULL DEFAULT NULL COMMENT '新增用户数量',
  `retention_rate` decimal(16, 2) NULL DEFAULT NULL COMMENT '留存率',
  PRIMARY KEY (`dt`, `create_date`, `retention_day`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '留存率' ROW_FORMAT = Dynamic;

15、用户新增活跃统计

DROP TABLE IF EXISTS `ads_user_stats`;
CREATE TABLE `ads_user_stats`  (
  `dt` date NOT NULL COMMENT '统计日期',
  `recent_days` bigint(20) NOT NULL COMMENT '最近n日,1:最近1日,7:最近7日,30:最近30日',
  `new_user_count` bigint(20) NULL DEFAULT NULL COMMENT '新增用户数',
  `active_user_count` bigint(20) NULL DEFAULT NULL COMMENT '活跃用户数',
  PRIMARY KEY (`dt`, `recent_days`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '用户新增活跃统计' ROW_FORMAT = Dynamic;


1.2 数据导出


数据导出工具选用DataX,选用HDFSReader和MySQLWriter


1.2.1 DataX配置文件生成脚本


1、在/home/zhm/bin目录下创建gen_export_config.py脚本

vim ~/bin/gen_export_config.py 

2、提交如下内容

# coding=utf-8
import json
import getopt
import os
import sys
import MySQLdb
#MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "000000"
#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "hadoop102"
hdfs_nn_port = "8020"
#生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/module/datax/job/export"
def get_connection():
    return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)
def get_mysql_meta(database, table):
    connection = get_connection()
    cursor = connection.cursor()
    sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
    cursor.execute(sql, [database, table])
    fetchall = cursor.fetchall()
    cursor.close()
    connection.close()
    return fetchall
def get_mysql_columns(database, table):
    return map(lambda x: x[0], get_mysql_meta(database, table))
def generate_json(target_database, target_table):
    job = {
        "job": {
            "setting": {
                "speed": {
                    "channel": 3
                },
                "errorLimit": {
                    "record": 0,
                    "percentage": 0.02
                }
            },
            "content": [{
                "reader": {
                    "name": "hdfsreader",
                    "parameter": {
                        "path": "${exportdir}",
                        "defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
                        "column": ["*"],
                        "fileType": "text",
                        "encoding": "UTF-8",
                        "fieldDelimiter": "\t",
                        "nullFormat": "\\N"
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                        "writeMode": "replace",
                        "username": mysql_user,
                        "password": mysql_passwd,
                        "column": get_mysql_columns(target_database, target_table),
                        "connection": [
                            {
                                "jdbcUrl":
                                    "jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + target_database + "?useUnicode=true&characterEncoding=utf-8",
                                "table": [target_table]
                            }
                        ]
                    }
                }
            }]
        }
    }
    if not os.path.exists(output_path):
        os.makedirs(output_path)
    with open(os.path.join(output_path, ".".join([target_database, target_table, "json"])), "w") as f:
        json.dump(job, f)
def main(args):
    target_database = ""
    target_table = ""
    options, arguments = getopt.getopt(args, '-d:-t:', ['targetdb=', 'targettbl='])
    for opt_name, opt_value in options:
        if opt_name in ('-d', '--targetdb'):
            target_database = opt_value
        if opt_name in ('-t', '--targettbl'):
            target_table = opt_value
    generate_json(target_database, target_table)
if __name__ == '__main__':
    main(sys.argv[1:])

注意:

(1)安装python_Mysql驱动

由于需要使用Python去访问mysql数据库,所以到安装驱动,命令如下:

sudo yum install -y MySQL-python

(2)脚本使用说明

python gen_export_config.py -d database -t table

通过-d传入MySQL数据库名,-t传入MySQL表名,执行上述命令即可生成该表的DataX同步配置文件。

2、在/home/zhm/bin目录下创建gen_export_config.sh脚本

vim gen_export_config.sh

添加如下内容

#!/bin/bash
python ~/bin/gen_export_config.py -d gmall_report -t ads_activity_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_coupon_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_new_buyer_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_order_by_province
python ~/bin/gen_export_config.py -d gmall_report -t ads_page_path
python ~/bin/gen_export_config.py -d gmall_report -t ads_repeat_purchase_by_tm
python ~/bin/gen_export_config.py -d gmall_report -t ads_sku_cart_num_top3_by_cate
python ~/bin/gen_export_config.py -d gmall_report -t ads_trade_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_trade_stats_by_cate
python ~/bin/gen_export_config.py -d gmall_report -t ads_trade_stats_by_tm
python ~/bin/gen_export_config.py -d gmall_report -t ads_traffic_stats_by_channel
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_action
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_change
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_retention
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_stats

3、为gen_export_config.sh脚本增加执行权限

chmod +x gen_export_config.sh
• 1

4、执行gen_export_config.sh脚本,生产配置文件

gen_export_config.sh 
• 1

5、观察生成的配置文件

ls /opt/module/datax/job/export/
• 1


1.2.2 编写每日导出脚本


1、在hadoop102的/home/zhmbin目录下创建hdfs_to_mysql.sh

2、编写如下内容

#! /bin/bash
DATAX_HOME=/opt/module/datax
#DataX导出路径不允许存在空文件,该函数作用为清理空文件
handle_export_path(){
  target_file=$1
  for i in `hadoop fs -ls -R $target_file | awk '{print $8}'`; do
    hadoop fs -test -z $i
    if [[ $? -eq 0 ]]; then
      echo "$i文件大小为0,正在删除"
      hadoop fs -rm -r -f $i
    fi
  done
}
#数据导出
export_data() {
  datax_config=$1
  export_dir=$2
  hadoop fs -test -e $export_dir
  if [[ $? -eq 0 ]]
  then
    handle_export_path $export_dir
    file_count=$(hadoop fs -ls $export_dir | wc -l)
    if [ $file_count -gt 0 ]
    then
      set -e;
      $DATAX_HOME/bin/datax.py -p"-Dexportdir=$export_dir" $datax_config
      set +e;
    else 
      echo "$export_dir 目录为空,跳过~"
    fi
  else
    echo "路径 $export_dir 不存在,跳过~"
  fi
}
case $1 in
  "ads_new_buyer_stats")
    export_data /opt/module/datax/job/export/gmall_report.ads_new_buyer_stats.json /warehouse/gmall/ads/ads_new_buyer_stats
  ;;
  "ads_order_by_province")
    export_data /opt/module/datax/job/export/gmall_report.ads_order_by_province.json /warehouse/gmall/ads/ads_order_by_province
  ;;
  "ads_page_path")
    export_data /opt/module/datax/job/export/gmall_report.ads_page_path.json /warehouse/gmall/ads/ads_page_path
  ;;
  "ads_repeat_purchase_by_tm")
    export_data /opt/module/datax/job/export/gmall_report.ads_repeat_purchase_by_tm.json /warehouse/gmall/ads/ads_repeat_purchase_by_tm
  ;;
  "ads_trade_stats")
    export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats.json /warehouse/gmall/ads/ads_trade_stats
  ;;
  "ads_trade_stats_by_cate")
    export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_cate.json /warehouse/gmall/ads/ads_trade_stats_by_cate
  ;;
  "ads_trade_stats_by_tm")
    export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_tm.json /warehouse/gmall/ads/ads_trade_stats_by_tm
  ;;
  "ads_traffic_stats_by_channel")
    export_data /opt/module/datax/job/export/gmall_report.ads_traffic_stats_by_channel.json /warehouse/gmall/ads/ads_traffic_stats_by_channel
  ;;
  "ads_user_action")
    export_data /opt/module/datax/job/export/gmall_report.ads_user_action.json /warehouse/gmall/ads/ads_user_action
  ;;
  "ads_user_change")
    export_data /opt/module/datax/job/export/gmall_report.ads_user_change.json /warehouse/gmall/ads/ads_user_change
  ;;
  "ads_user_retention")
    export_data /opt/module/datax/job/export/gmall_report.ads_user_retention.json /warehouse/gmall/ads/ads_user_retention
  ;;
  "ads_user_stats")
    export_data /opt/module/datax/job/export/gmall_report.ads_user_stats.json /warehouse/gmall/ads/ads_user_stats
  ;;
  "ads_activity_stats")
    export_data /opt/module/datax/job/export/gmall_report.ads_activity_stats.json /warehouse/gmall/ads/ads_activity_stats
  ;;
  "ads_coupon_stats")
    export_data /opt/module/datax/job/export/gmall_report.ads_coupon_stats.json /warehouse/gmall/ads/ads_coupon_stats
  ;;
  "ads_sku_cart_num_top3_by_cate")
    export_data /opt/module/datax/job/export/gmall_report.ads_sku_cart_num_top3_by_cate.json /warehouse/gmall/ads/ads_sku_cart_num_top3_by_cate
  ;;
"all")
  export_data /opt/module/datax/job/export/gmall_report.ads_new_buyer_stats.json /warehouse/gmall/ads/ads_new_buyer_stats
  export_data /opt/module/datax/job/export/gmall_report.ads_order_by_province.json /warehouse/gmall/ads/ads_order_by_province
  export_data /opt/module/datax/job/export/gmall_report.ads_page_path.json /warehouse/gmall/ads/ads_page_path
  export_data /opt/module/datax/job/export/gmall_report.ads_repeat_purchase_by_tm.json /warehouse/gmall/ads/ads_repeat_purchase_by_tm
  export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats.json /warehouse/gmall/ads/ads_trade_stats
  export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_cate.json /warehouse/gmall/ads/ads_trade_stats_by_cate
  export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_tm.json /warehouse/gmall/ads/ads_trade_stats_by_tm
  export_data /opt/module/datax/job/export/gmall_report.ads_traffic_stats_by_channel.json /warehouse/gmall/ads/ads_traffic_stats_by_channel
  export_data /opt/module/datax/job/export/gmall_report.ads_user_action.json /warehouse/gmall/ads/ads_user_action
  export_data /opt/module/datax/job/export/gmall_report.ads_user_change.json /warehouse/gmall/ads/ads_user_change
  export_data /opt/module/datax/job/export/gmall_report.ads_user_retention.json /warehouse/gmall/ads/ads_user_retention
  export_data /opt/module/datax/job/export/gmall_report.ads_user_stats.json /warehouse/gmall/ads/ads_user_stats
  export_data /opt/module/datax/job/export/gmall_report.ads_activity_stats.json /warehouse/gmall/ads/ads_activity_stats
  export_data /opt/module/datax/job/export/gmall_report.ads_coupon_stats.json /warehouse/gmall/ads/ads_coupon_stats
  export_data /opt/module/datax/job/export/gmall_report.ads_sku_cart_num_top3_by_cate.json /warehouse/gmall/ads/ads_sku_cart_num_top3_by_cate
  ;;
esac

3、增加脚本执行权限

4、脚本用法

hdfs_to_mysql.sh all

                                                                                       

                                                                        您的支持是我创作的无限动力

                                                                                       

                      希望我能为您的未来尽绵薄之力

                                                                                       

                    如有错误,谢谢指正若有收获,谢谢赞美

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
SQL 资源调度 数据库
数仓学习---14、大数据技术之DolphinScheduler
数仓学习---14、大数据技术之DolphinScheduler
|
7月前
|
SQL HIVE
数仓学习-----named_struct和collect_set函数
数仓学习-----named_struct和collect_set函数
152 5
|
7月前
|
存储 JSON 数据处理
数仓学习---数仓开发之DWD层
数仓学习---数仓开发之DWD
590 6
数仓学习---数仓开发之DWD层
|
7月前
|
存储 NoSQL 数据处理
Apache Paimon流式湖仓学习交流群成立
Apache Paimon流式湖仓学习交流群成立
515 59
|
7月前
|
数据挖掘 数据库
数仓学习---数仓开发之DIM层
数仓学习---数仓开发之DIM层 维度建模、维度表介绍、
491 1
|
7月前
|
数据格式
数仓学习---数仓开发之ODS层
数仓学习---数仓开发之ODS层
756 2
|
7月前
|
SQL 分布式计算 Java
数仓学习---7、数据仓库设计、数据仓库环境准备、模拟数据生成
数仓学习---7、数据仓库设计、数据仓库环境准备
284 2
|
数据可视化 关系型数据库 MySQL
数仓学习---16、可视化报表(Superset)
数仓学习---16、可视化报表(Superset)
|
消息中间件 SQL Kafka
数仓学习---15、数据仓库工作流调度
数仓学习---15、数据仓库工作流调度
|
2月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。

热门文章

最新文章