分享之python 进程

简介: 分享之python 进程

multiprocessing是python的多进程管理包,和threading.Thread类似。


1、multiprocessing模块


直接从侧面用subprocesses替换线程使用GIL的方式,由于这一点,multiprocessing模块可以让程序员在给定的机器上充分的利用CPU。在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法


from multiprocessing import Process
def func(name):
    print('hello', name)
if __name__ == "__main__":
    p = Process(target=func,args=('zhangyanlin',))
    p.start()
    p.join()  # 等待进程执行完毕


在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据, multiprocessing提供了两种方式。


(1)multiprocessing,Array,Value


数据可以用Value或Array存储在一个共享内存地图里,如下:


from multiprocessing import Array,Value,Process
def func(a,b):
    a.value = 3.333333333333333
    for i in range(len(b)):
        b[i] = -b[i]
if __name__ == "__main__":
    num = Value('d',0.0)
    arr = Array('i',range(11))
    c = Process(target=func,args=(num,arr))
    d= Process(target=func,args=(num,arr))
    c.start()
    d.start()
    c.join()
    d.join()
    print(num.value)
    for i in arr:
        print(i)


输出:

3.1415927

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]


创建num和arr时,“d”和“i”参数由Array模块使用的typecodes创建:“d”表示一个双精度的浮点数,“i”表示一个有符号的整数,这些共享对象将被线程安全的处理。


Array(‘i’, range(10))中的‘i’参数:


‘c’: ctypes.c_char     ‘u’: ctypes.c_wchar    ‘b’: ctypes.c_byte     ‘B’: ctypes.c_ubyte
‘h’: ctypes.c_short     ‘H’: ctypes.c_ushort    ‘i’: ctypes.c_int      ‘I’: ctypes.c_uint
‘l’: ctypes.c_long,    ‘L’: ctypes.c_ulong    ‘f’: ctypes.c_float    ‘d’: ctypes.c_double


(2)multiprocessing,Manager


由Manager()返回的manager提供list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array类型的支持。


from multiprocessing import Process,Manager
def f(d,l):
    d["name"] = "zhangyanlin"
    d["age"] = 18
    d["Job"] = "pythoner"
    l.reverse()
if __name__ == "__main__":
    with Manager() as man:
        d = man.dict()
        l = man.list(range(10))
        p = Process(target=f,args=(d,l))
        p.start()
        p.join()
        print(d)
        print(l)
输出:
  {0.25: None, 1: '1', '2': 2}
  [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process manager比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的manager可以通过进程在网络上不同的计算机之间共享,不过他比shared memory要慢。


2、进程池(Using a pool of workers)


Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。


进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。


我们可以用Pool类创建一个进程池, 展开提交的任务给进程池。 例:


#apply
from  multiprocessing import Pool
import time
def f1(i):
    time.sleep(0.5)
    print(i)
    return i + 100
if __name__ == "__main__":
    pool = Pool(5)
    for i in range(1,31):
        pool.apply(func=f1,args=(i,))
#apply_async
def f1(i):
    time.sleep(0.5)
    print(i)
    return i + 100
def f2(arg):
    print(arg)
if __name__ == "__main__":
    pool = Pool(5)
    for i in range(1,31):
        pool.apply_async(func=f1,args=(i,),callback=f2)
    pool.close()
    pool.join()


一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似map的实现。


   processes :使用的工作进程的数量,如果processes是None那么使用 os.cpu_count()返回的数量。

   initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。

   maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。

   context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context


注意:Pool对象的方法只可以被创建pool的进程所调用。


New in version 3.2: maxtasksperchild


New in version 3.4: context


进程池的方法


   apply(func[, args[, kwds]]) :使用arg和kwds参数调用func函数,结果返回前会一直阻塞,由于这个原因,apply_async()更适合并发执行,另外,func函数仅被pool中的一个进程运行。


   apply_async(func[, args[, kwds[, callback[, error_callback]]]]) : apply()方法的一个变体,会返回一个结果对象。如果callback被指定,那么callback可以接收一个参数然后被调用,当结果准备好回调时会调用callback,调用失败时,则用error_callback替换callback。 Callbacks应被立即完成,否则处理结果的线程会被阻塞。


   close() : 阻止更多的任务提交到pool,待任务完成后,工作进程会退出。


   terminate() : 不管任务是否完成,立即停止工作进程。在对pool对象进程垃圾回收的时候,会立即调用terminate()。


   join() : wait工作线程的退出,在调用join()前,必须调用close() or terminate()。这样是因为被终止的进程需要被父进程调用wait(join等价与wait),否则进程会成为僵尸进程。

    map(func, iterable[, chunksize])?
    map_async(func, iterable[, chunksize[, callback[, error_callback]]])?
    imap(func, iterable[, chunksize])?
    imap_unordered(func, iterable[, chunksize])
    starmap(func, iterable[, chunksize])?
    starmap_async(func, iterable[, chunksize[, callback[, error_back]]])
相关文章
|
16天前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
|
29天前
|
消息中间件 安全 Kafka
Python IPC机制全攻略:让进程间通信变得像呼吸一样自然
【9月更文挑战第12天】在编程领域,进程间通信(IPC)是连接独立执行单元的关键技术。Python凭借简洁的语法和丰富的库支持,提供了多种IPC方案。本文将对比探讨Python的IPC机制,包括管道与消息队列、套接字与共享内存。管道适用于简单场景,而消息队列更灵活,适合高并发环境。套接字广泛用于网络通信,共享内存则在本地高效传输数据。通过示例代码展示`multiprocessing.Queue`的使用,帮助读者理解IPC的实际应用。希望本文能让你更熟练地选择和运用IPC机制。
39 10
|
2天前
|
数据采集 消息中间件 Python
Python爬虫-进程间通信
Python爬虫-进程间通信
|
2月前
|
数据采集 存储 安全
如何确保Python Queue的线程和进程安全性:使用锁的技巧
本文探讨了在Python爬虫技术中使用锁来保障Queue(队列)的线程和进程安全性。通过分析`queue.Queue`及`multiprocessing.Queue`的基本线程与进程安全特性,文章指出在特定场景下使用锁的重要性。文中还提供了一个综合示例,该示例利用亿牛云爬虫代理服务、多线程技术和锁机制,实现了高效且安全的网页数据采集流程。示例涵盖了代理IP、User-Agent和Cookie的设置,以及如何使用BeautifulSoup解析HTML内容并将其保存为文档。通过这种方式,不仅提高了数据采集效率,还有效避免了并发环境下的数据竞争问题。
如何确保Python Queue的线程和进程安全性:使用锁的技巧
|
25天前
|
监控 Ubuntu API
Python脚本监控Ubuntu系统进程内存的实现方式
通过这种方法,我们可以很容易地监控Ubuntu系统中进程的内存使用情况,对于性能分析和资源管理具有很大的帮助。这只是 `psutil`库功能的冰山一角,`psutil`还能够提供更多关于系统和进程的详细信息,强烈推荐进一步探索这个强大的库。
32 1
|
28天前
|
Python
惊!Python进程间通信IPC,让你的程序秒变社交达人,信息畅通无阻
【9月更文挑战第13天】在编程的世界中,进程间通信(IPC)如同一场精彩的社交舞会,每个进程通过优雅的IPC机制交换信息,协同工作。本文将带你探索Python中的IPC奥秘,了解它是如何让程序实现无缝信息交流的。IPC如同隐形桥梁,连接各进程,使其跨越边界自由沟通。Python提供了多种IPC机制,如管道、队列、共享内存及套接字,适用于不同场景。通过一个简单的队列示例,我们将展示如何使用`multiprocessing.Queue`实现进程间通信,使程序如同社交达人般高效互动。掌握IPC,让你的程序在编程舞台上大放异彩。
18 3
|
1月前
|
安全 开发者 Python
Python IPC大揭秘:解锁进程间通信新姿势,让你的应用无界连接
【9月更文挑战第11天】在编程世界中,进程间通信(IPC)如同一座无形的桥梁,连接不同进程的信息孤岛,使应用无界而广阔。Python凭借其丰富的IPC机制,让开发者轻松实现进程间的无缝交流。本文将揭开Python IPC的神秘面纱,介绍几种关键的IPC技术:管道提供简单的单向数据传输,适合父子进程间通信;队列则是线程和进程安全的数据共享结构,支持多进程访问;共享内存允许快速读写大量数据,需配合锁机制确保一致性;套接字则能实现跨网络的通信,构建分布式系统。掌握这些技术,你的应用将不再受限于单个进程,实现更强大的功能。
51 5
|
1月前
|
消息中间件 Kafka 数据安全/隐私保护
Python IPC实战指南:构建高效稳定的进程间通信桥梁
【9月更文挑战第11天】在软件开发中,随着应用复杂度的提升,进程间通信(IPC)成为构建高效系统的关键。本文通过一个分布式日志处理系统的案例,介绍如何使用Python和套接字实现可靠的IPC。案例涉及定义通信协议、实现日志发送与接收,并提供示例代码。通过本教程,你将学会构建高效的IPC桥梁,并了解如何根据需求选择合适的IPC机制,确保系统的稳定性和安全性。
40 5
|
1月前
|
消息中间件 网络协议 Python
工具人逆袭!掌握Python IPC,让你的进程从此告别单打独斗
【9月更文挑战第9天】你是否曾遇到多个Python程序像孤岛般无法通信,导致数据孤立、任务难协同的问题?掌握进程间通信(IPC)技术,可助你打破这一僵局。IPC是不同进程间传递数据或信号的机制,在Python中常用的方法有管道、消息队列、共享内存及套接字等。其中,管道适用于父子或兄弟进程间简单数据传递;套接字则不仅限于本地,还能在网络间实现复杂的数据交换。通过学习IPC,你将能设计更健壮灵活的系统架构,成为真正的编程高手。
21 3
|
1月前
|
安全 开发者 Python
揭秘Python IPC:进程间的秘密对话,让你的系统编程更上一层楼
【9月更文挑战第8天】在系统编程中,进程间通信(IPC)是实现多进程协作的关键技术。IPC机制如管道、队列、共享内存和套接字,使进程能在独立内存空间中共享信息,提升系统并发性和灵活性。Python提供了丰富的IPC工具,如`multiprocessing.Pipe()`和`multiprocessing.Queue()`,简化了进程间通信的实现。本文将从理论到实践,详细介绍各种IPC机制的特点和应用场景,帮助开发者构建高效、可靠的多进程应用。掌握Python IPC,让系统编程更加得心应手。
26 4