Graph RAG: 知识图谱结合 LLM 的检索增强

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: RAG(Retrieval Argumented Generation)这种基于特定任务/问题的文档检索范式中,我们通常先收集必要的上下文,然后利用具有认知能力的机器学习模型进行上下文学习(in-context learning),来合成任务的答案。这次,我们借助 LLM 的力量,强化下 RAG。

本文为大家揭示 NebulaGraph 率先提出的 Graph RAG 方法,这种结合知识图谱、图数据库作为大模型结合私有知识系统的最新技术栈,是 LLM+ 系列的第三篇,加上之前的图上下文学习、Text2Cypher 这两篇文章,目前 NebulaGraph + LLM 相关的文章一共有 3 篇。

Graph RAG

第一篇关于上下文学习的博客中我们介绍过,RAG(Retrieval Argumented Generation)这种基于特定任务/问题的文档检索范式中,我们通常先收集必要的上下文,然后利用具有认知能力的机器学习模型进行上下文学习(in-context learning),来合成任务的答案。

借助 LLM 这个只需要”说话“就可以灵活处理复杂问题的感知层,只需要两步,就能搭建一个基于私有知识的智能应用:

  • 利用各种搜索方式(比如 Embedding 与向量数据库)从给定的文档中检索相关知识。
  • 利用 LLM 理解并智能地合成答案。

而这篇博客中,我们结合最新的探索进展和思考,尝试把 Graph RAG 和其他方法进行比较,说得更透一点。此外,我们决定开始用 Graph RAG 这个叫法来描述它。

实际上, Graph RAG,是最先由我和 Jerry Liu 的 直播研讨会讨论相关的讨论的 Twitter Thread 中提到的,差不多的内容我在 NebulaGraph 社区直播 中也用中文介绍过。

在 RAG 中知识图谱的价值

这部分内容我们在第一篇文章中阐述过,比如一个查询:“告诉我所有关于苹果和乔布斯的事”,基于乔布斯自传这本书进行问答,而这个问题涉及到的上下文分布在自传这本书的 30 页(分块)的时候,传统的“分割数据,Embedding 再向量搜索”方法在多个文档块里用 TOP-K 去搜索的方法很难得到这种分散,细粒的完整信息。而且,这种方法还很容易遗漏互相关联的文档块,从而导致信息检索不完整。

除此之外,在之后一次技术会议中,我有幸和 leadscloud.com 的徐旭讨论之后(他们因为有知识图谱的技术背景,也做了和我们类似的探索和尝试!),让我意识到知识图谱可以减少基于嵌入的语义搜索所导致的不准确性。徐旭给出的一个有趣的例子是“保温大棚”与“保温杯”,尽管在语义上两者是存在相关性的,但在大多数场景下,这种通用语义(Embedding)下的相关性常常是我们不希望产生的,进而作为错误的上下文而引入“幻觉”。

这时候,保有领域知识的知识图谱则是非常直接可以缓解、消除这种幻觉的手段。

用 NebulaGraph 实现 Graph RAG

一个简单的 Graph RAG 可以如下去简单实现:

  1. 使用 LLM(或其他)模型从问题中提取关键实体
  2. 根据这些实体检索子图,深入到一定的深度(例如,2)
  3. 利用获得的上下文利用 LLM 产生答案。

对应的伪代码可能是这样:

# 伪代码

def _get_key_entities(query_str, llm=None ,with_llm=True):
    ...
    return _expand_synonyms(entities)

def _retrieve_subgraph_context(entities, depth=2, limit=30):
    ...
    return nebulagraph_store.get_relations(entities, depth, limit)

def _synthesize_answer(query_str, graph_rag_context, llm):
    return llm.predict(PROMPT_SYNTHESIZE_AND_REFINE, query_str, graph_rag_context)

def simple_graph_rag(query_str, nebulagraph_store, llm):
    entities = _get_key_entities(query_str, llm)
    graph_rag_context = _retrieve_subgraph_context(entities)
    return _synthesize_answer(
        query_str, graph_rag_context, llm)

然而,有了像 LlamaIndex 这样方便的 LLM 编排工具,开发者可以专注于 LLM 的编排逻辑和 pipeline 设计,而不用亲自处理很多细节的抽象与实现。

所以,用 LlamaIndex,我们可以轻松搭建 Graph RAG,甚至整合更复杂的 RAG 逻辑,比如 [Graph + Vector RAG]。

在 LlamaIndex 中,我们有两种方法实现 Graph RAG:

  • KnowledgeGraphIndex 只用来对任何私有数据从零构建知识图谱(基于 LLM 或者其他语言模型),再 4 行代码进行 Graph RAG:
graph_store = NebulaGraphStore(
    space_name=space_name,
    edge_types=edge_types,
    rel_prop_names=rel_prop_names,
    tags=tags,
)
storage_context = StorageContext.from_defaults(graph_store=graph_store)

# Build KG
kg_index = KnowledgeGraphIndex.from_documents(
    documents,
    storage_context=storage_context,
    max_triplets_per_chunk=10,
    space_name=space_name,
    edge_types=edge_types,
    rel_prop_names=rel_prop_names,
    tags=tags,
)

kg_query_engine = kg_index.as_query_engine()
  • KnowledgeGraphRAGQueryEngine 则可以在任何已经存在的知识图谱上进行 Graph RAG。不过,我还没有完成这个 PR
graph_store = NebulaGraphStore(
    space_name=space_name,
    edge_types=edge_types,
    rel_prop_names=rel_prop_names,
    tags=tags,
)
storage_context = StorageContext.from_defaults(graph_store=graph_store)

graph_rag_query_engine = KnowledgeGraphRAGQueryEngine(
    storage_context=storage_context,
)

最后,我做了一个 Streamlit 的 Demo 来比较 Graph RAG 与 Vector RAG,从中我们可以看到 Graph RAG 并没有取代 Embedding、向量搜索的方法,而是增强了/补充了它的不足。

Text2Cypher

基于图谱的 LLM 的另一种有趣方法是 Text2Cypher。这种方法不依赖于实体的子图检索,而是将任务/问题翻译成一个面向答案的特定图查询,和我们常说的 Text2SQL 方法本质是一样的。

在 NebulaGraph 上进行 Text2Cypher

在之前的文章中我们已经介绍过,得益于 LLM,实现 Text2Cypher 比传统的 ML 方法更为简单和便宜。

比如,LangChain: NebulaGraphQAChainLlama Index: KnowledgeGraphQueryEngine 让我们 3 行代码就能跑起来 Text2Cypher。

比较 Text2Cypher 和 (Sub)Graph RAG

这两种方法主要在其检索机制上有所不同。Text2Cypher 根据 KG 的 Schema 和给定的任务生成图形模式查询,而 SubGraph RAG 获取相关的子图以提供上下文。

两者都有其优点,为了大家更直观理解他们的特点,我做了这个 Demo 视频:

我们可以看到两者的图查询模式在可视化下是有非常清晰的差异的。

结合 Text2Cypher 的 Graph RAG

然而,两者并没有绝对的好与坏,不同场景下,它们各有优劣。

在现实世界中,我们可能并不总是知道哪种方法更有效(用来区分应该用哪一种),因此,我倾向于考虑同时利用两者,这样获取的两种检索结果作为上下文,一起来生成最终答案的效果可能是最好的。

具体的实现方法在这个 PR中已经可以做到了,只需要设置 with_text2cypher=True,Graph RAG 就会包含 Text2Cypher 上下文,敬请期待它的合并。

结论

通过将知识图谱、图存储集成到 LLM 技术栈中,Graph RAG 把 RAG 的上下文学习推向了一个新的高度。它能在 LLM 应用中,通过利用现有(或新建)的知识图谱,提取细粒度、精确调整、领域特定且互联的知识。

请继续关注图谱和 LLM 领域的更深入的探索和进一步的发展。

相关阅读


谢谢你读完本文 (///▽///)

如果你想尝鲜图数据库 NebulaGraph,记得去 GitHub 下载、使用、(^з^)-☆ star 它 -> GitHub;和其他的 NebulaGraph 用户一起交流图数据库技术和应用技能,留下「你的名片」一起玩耍呀~

2023 年 NebulaGraph 技术社区年度征文活动正在进行中,来这里领取华为 Meta 60 Pro、Switch 游戏机、小米扫地机器人等等礼品哟~ 活动链接: https://discuss.nebula-graph.com.cn/t/topic/13970

相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
目录
相关文章
|
3月前
|
人工智能 自然语言处理 数据库
基于RAG和LLM的水利知识问答系统研究
随着全球水资源紧张加剧,我国面临严峻的水资源管理挑战。《十四五规划》提出构建智慧水利体系,通过科技手段提升水情测报和智能调度能力。基于大语言模型(LLM)的水利智能问答系统,利用自然语言处理技术,提供高效、准确的水利信息查询和决策支持,助力水资源管理智能化。该系统通过RAG技术和Agent功能,实现了对水利知识的深度理解和精准回答,适用于水利知识科普、水务治理建议及灾害应急决策等多个场景,推动了水利行业的信息化和智能化发展。
|
3月前
|
人工智能 自然语言处理 前端开发
基于RAG和LLM的水利知识大语言模型系统开发有感
在数字化时代,水利行业的智能化管理尤为重要。本文介绍了基于大语言模型(LLM)和检索增强生成(RAG)技术的水利知识问答系统的开发过程。该系统结合了前沿AI技术和水利专业知识,通过构建全面的水利知识库,优化用户体验,确保系统的灵活性和可扩展性。项目展示了AI技术在垂直领域的巨大潜力,为水利行业的智能化发展贡献力量。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
5月前
|
存储 SQL 自然语言处理
LLM RAG系列
LLM RAG系列
135 1
|
2月前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
58 12
|
2月前
|
数据采集 人工智能 自然语言处理
文档智能与检索增强生成结合的LLM知识库方案测评:优势与改进空间
《文档智能 & RAG让AI大模型更懂业务》解决方案通过结合文档智能和检索增强生成(RAG)技术,构建企业级文档知识库。方案详细介绍了文档清洗、向量化、问答召回等步骤,但在向量化算法选择、多模态支持和用户界面上有待改进。部署过程中遇到一些技术问题,建议优化性能和增加实时处理能力。总体而言,方案在金融、法律、医疗等领域具有广泛应用前景。
72 11
|
3月前
|
存储 人工智能 算法
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
为了帮助更多人掌握大模型技术,尼恩和他的团队编写了《LLM大模型学习圣经》系列文档,包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构,基于LLM+RAG构建生产级企业知识库》和《从0到1吃透大模型的顶级架构》。这些文档不仅系统地讲解了大模型的核心技术,还提供了实战案例和配套视频,帮助读者快速上手。
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
|
3月前
|
存储 机器学习/深度学习 人工智能
文档智能与RAG技术在LLM中的应用评测
本文介绍了阿里云在大型语言模型(LLM)中应用文档智能与检索增强生成(RAG)技术的解决方案,通过文档预处理、知识库构建、高效检索和生成模块,显著提升了LLM的知识获取和推理能力,尤其在法律、医疗等专业领域表现突出。
182 1
|
3月前
|
机器学习/深度学习 数据采集 人工智能
大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库
大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库
|
8月前
|
弹性计算 自然语言处理 开发工具
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
下一篇
开通oss服务