【数据结构】二叉树的·深度优先遍历(前中后序遍历)and·广度优先(层序遍历)

简介: 文章目录一、二叉树的深度优先遍历🌺1.前序遍历(1)`先序遍历`的过程:(2)流程图:(3)代码:(4)测试结果:🌼2.中序遍历(1)`中序遍历`的过程:(2)代码:(3)测试结果:🌻3.后序遍历

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤

📃个人主页 :阿然成长日记 👈点击可跳转

📆 个人专栏: 🔹数据结构与算法🔹C语言进阶

🚩 不能则学,不知则问,耻于问人,决无长进

🍭 🍯 🍎 🍏 🍊 🍋 🍒 🍇 🍉 🍓 🍑 🍈 🍌 🍐 🍍

文章目录

一、二叉树的深度优先遍历

🌺1.前序遍历

(1)先序遍历的过程:

1.先访问当前节点(即根节点)

2.遍历当前节点的左节点,再同样遍历左子树中的节点

3.遍历完当前节点的左子树后,再去遍历当前节点的右子树,再遍历右子树中的节点

总结先访问根节点,然后遍历左子树,最后遍历右子树;即根左右

(2)流程图:

(3)代码:

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  printf("%d ", root->_data);
  BinaryTreePrevOrder(root->_left);
  BinaryTreePrevOrder(root->_right);
}

4)测试结果:

1->2->3->NULL->NULL->NULL->4->5->NULL->NULL->6->NULL->NULL

🌼2.中序遍历

(1)中序遍历的过程:

1.先进入当前节点的左子树,以同样的步骤遍历左子树的节点

2.访问当前节点

3.最后进入到当前节点的右子树,以同样的步骤遍历右子树中的节点

总结: 先遍历左子树,再访问根节点,最后遍历右子树,即 左根右

(2)代码:

// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  BinaryTreePrevOrder(root->_left);
  printf("%d ", root->_data);
  BinaryTreePrevOrder(root->_right);
}

(3)测试结果:

NULL->3->NULL->2->NULL->1->NULL->5->4->NULL->6->NULL

🌻3.后序遍历

(1) 后序遍历的过程:

1.先进入当前节点的左子树,以同样的步骤遍历左子树中的节点

2.再进入当前节点的右子树,以同样的步骤去遍历右子树中的节点

3.最后遍历此左子树和右子树的父亲节点,也就是该节点

总结:先遍历左子树,再遍历右子树,最后访问根节点,即左右根

(2)代码:

// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  BinaryTreePrevOrder(root->_left);
  BinaryTreePrevOrder(root->_right);
  printf("%d ", root->_data);
}

(3)测试结果:

NULL->NULL->3->NULL->2->NULL->NULL->5->NULL->NULL->6->4->1

二、【广度优先】层序遍历

1.思路及过程:

构建一颗二叉树

1.将root节点1放入队列。

2.取队列首元素1,并将节点1左右孩子入队

3.队首元素出队列

4.取队列首元素2,并将节点2左右孩子入队,由于只有左孩子,所以只用入队一个元素。

5.队首元素出队列

6.取队列首元素4,并将节点4左右孩子入队。

7.队首元素出队列

8.取队列首元素3,并将节点3左右孩子入队。但是,元素3左右孩子为NULL,因此不用入队。直接执行出队列操作。

9.取队列首元素5,并将节点5左右孩子入队。但是,元素5左右孩子为NULL,因此不用入队。直接执行出队列操作.

10.取队列首元素6,并将节点6左右孩子入队。但是,元素6左右孩子为NULL,因此不用入队。直接执行出队列操作。


11.到此,队列元素已全部出队,层序遍历完成!

结果为:

2.代码

// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
  Que q;
  QueueInit(&q);
  if (root)
    QueuePush(&q,root);
  while (!QueueEmpty(&q))
  {
    BTNode* tmp = QueueFront(&q);
    printf("%d ", tmp->_data);
    if (tmp->_left)
    {
      QueuePush(&q,tmp->_left);
    }
    if (tmp->_right)
    {
      QueuePush(&q, tmp->_right);
    }
    QueuePop(&q);
  }
  printf("\n");
  QueueDestroy(&q);
}

3.测试结果

相关文章
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
207 10
 算法系列之数据结构-二叉树
|
9月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
195 12
|
9月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
170 10
|
9月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
287 3
|
10月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
9月前
|
数据采集 存储 算法
【C++数据结构——图】图的遍历(头歌教学实验平台习题) 【合集】
本文介绍了图的遍历算法,包括深度优先遍历(DFS)和广度优先遍历(BFS)。深度优先遍历通过递归方式从起始节点深入探索图,适用于寻找路径、拓扑排序等场景;广度优先遍历则按层次逐层访问节点,适合无权图最短路径和网络爬虫等应用。文中提供了C++代码示例,演示了如何实现这两种遍历方法,并附有测试用例及结果,帮助读者理解和实践图的遍历算法。
350 0
|
11月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
277 4
|
11月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
237 59
|
4月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
75 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。

热门文章

最新文章