快速使用 Elasticsearch+PAI 部署 AI 大模型知识库对话

简介: 本文为您介绍如何通过Elasticsearch和PAI-EAS部署企业级AI知识库对话,利用Elasticsearch进行企业专属知识库的检索,利用PAI-EAS来进行AI语言大模型推理,并通过开源框架LangChain将二者有机结合,从而集成到您的业务服务当中。

背景信息

阿里云检索分析服务 Elasticsearch 版是100%兼容开源的分布式检索、分析套件。提供 Elasticsearch、Kibana、Logstash、Beats 等开源全托管的产品服务能力。为结构化/非结构化数据提供低成本、高性能及可靠性的检索、分析平台级产品服务。具备读写分离、存算分离、弹性伸缩、智能化运维、免费的X-Pack高级商业特性等产品特性。


PAI-EAS 是阿里云的模型在线服务平台,支持用户将模型一键部署为在线推理服务或 AI-Web 应用,可以一键部署 LLM 推理、AIGC 等热门服务应用。PAI-EAS 适用于实时推理、近实时异步推理等多种 AI 推理场景,具备 Serverless 自动扩缩容和完整运维监控体系能力。


LangChain 是一个开源的框架,可以让 AI 开发人员将像通义千问这样的大语言模型(LLM)和外部数据结合起来,从而在尽可能少消耗计算资源的情况下,获得更好的性能和效果。通过 LangChain 将输入的用户知识文件进行自然语言处理存储在向量数据库中。每次推理用户的输入会首先在知识库中查找与输入问题相近的答案,并将知识库答案与用户输入一起输入 EAS 的大模型服务中生成基于知识库的定制答案。


第一步:开通检索分析服务 Elasticsearch 版

在开始使用时,需要购买一台 检索分析服务 Elasticsearch 版实例。

  1. 进入阿里云官网,找到 产品 -> 大数据计算 -> 检索分析服务 Elasticsearch 版 -> 管理控制台

image.png


  1. 左侧导航栏 “Elasticsearch 实例” ,点击创建实例。


  1. 基础配置:选择 阿里云Elasticsearch - 通用商业版8.x版本 - 通用场景,点击下一步。


  1. 集群配置:按需选择可用区数量实例规格 ,点击下一步。


  1. 网络及系统配置:按需选择专有网络及交换机(所配置的专用网络需与 PAI-EAS 服务保持一致),配置实例名称和登录密码 - 下一步


然后点击确认订单:购买之后,返回“管理控制台”等待实例启动。


  1. 待状态变为“正常”,点击实例进入查看调用信息,记录私网地址和端口。



第二步:利用 EAS 部署 LLM 大模型推理服务

利用 PAI-EAS 部署大模型推理服务,具体操作步骤如下。

  1. 进入PAI EAS 模型在线服务页面。
  1. 登录 PAI控制台
  2. 在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。
  3. 在工作空间页面的左侧导航栏选择模型部署>模型在线服务(EAS),进入 PAI EAS 模型在线服务页面。


  1. PAI EAS 模型在线服务页面,单击部署服务
  2. 部署服务页面,配置以下关键参数。

参数

描述

服务名称

自定义服务名称。本案例使用的示例值为:chatllm_llama2_13b

部署方式

选择镜像部署AI-Web应用

镜像选择

PAI平台镜像列表中选择chat-llm-webui,镜像版本选择2.0

由于版本迭代迅速,部署时镜像版本选择最高版本即可。

运行命令

服务运行命令:

  • 如果使用chatglm2-6b模型进行部署:python webui/webui_server.py --port=8000 --model-path=THUDM/chatglm2-6b
  • 如果使用通义千问-7b模型进行部署:python webui/webui_server.py --port=8000 --model-path=Qwen/Qwen-7B-Chat
  • 如果使用llama2-7b模型进行部署:python webui/webui_server.py --port=8000 --model-path=meta-llama/Llama-2-7b-chat-hf
  • 如果使用llama2-13b模型进行部署:python webui/webui_server.py --port=8000 --model-path=meta-llama/Llama-2-13b-chat-hf --precision=fp16

端口号输入:8000

资源组种类

选择公共资源组

资源配置方法

选择常规资源配置

资源配置选择

必须选择GPU类型,实例规格推荐使用ml.gu7i.c8m30.1-gu30

7b的模型可以跑在GU30/A10/P100机型上。

13b的模型务必跑在gn6e的V100或A100的机型上。

专有网络配置

保持与Elasticsearch创建时的VPC一致!



  1. 单击部署,等待一段时间即可完成模型部署。
  2. 进入服务详情页中,点击查看调用信息,查看服务调用中 VPC 地址调用的的 API 和 token。



第三步:利用 Langchain 将业务串联并启动可视化 WEBUI

开源代码与公开镜像

GIthub 开源代码地址:https://github.com/aigc-apps/LLM_Solution/tree/master

我们提供了最方便快捷的部署方式,直接在 PAI-EAS 中选择平台镜像即可。


使用流程

1. PAI-EAS 部署 chatbot-langchain 的 webui 服务


参数

描述

服务名称

自定义服务名称。本案例使用的示例值为:chatbot_langchain_vpc

部署方式

选择镜像部署AI-Web应用

镜像选择

PAI平台镜像列表中选择chatbot-langchain,镜像版本选择1.0

由于版本迭代迅速,部署时镜像版本选择最高版本即可。

运行命令

服务运行命令:

  • uvicorn webui:app --host 0.0.0.0 --port 8000

端口号输入:8000

资源组种类

选择公共资源组

资源配置方法

选择常规资源配置

资源配置选择

选择CPU机型:ecs.c7.4xlarge

额外系统盘:60G

专有网络配置

保持与 Elasticsearch 创建时的VPC一致!



2. 待状态变为“运行中”后,查看Web应用,进入WebUI


3. Settings:用户配置相关参数

  • Embeding Model:支持四种可选的 embedding model 及其对应维度。推荐使用 SGPT-125M-weightedmean-nli-bitfit (dim=768)。
  • EAS:配置 EAS-LLM 相关参数。参考第二步配置后的内容:利用 EAS 部署 LLM 大模型推理服务。
  • VectorStore:配置 Elasticsearch 相关的连接参数。参考第一步配置后的内容:开通 Elasticsearch。
  • 支持方式:1)上传配置文件并解析;2)手动输入。
  • 配置文件格式可参考:
{
  "embedding": {
    "model_dir": "embedding_model/",
    "embedding_model": "SGPT-125M-weightedmean-nli-bitfit",
    "embedding_dimension": 768
  },
  "EASCfg": {
    "url": "http://xx.pai-eas.aliyuncs.com/api/predict/chatllm_demo_glm2",
    "token": "xxxxxxx=="
  },
  "vector_store": "Elasticsearch",
  "ElasticSearchCfg": {
    "ES_URL": "http://es-cn-xxx.elasticsearch.aliyuncs.com:9200",
    "ES_USER": "elastic",
    "ES_PASSWORD": "password",
    "ES_INDEX": "test_index"
  },
}


{
"embedding": {
"model_dir": "embedding_model/",
"embedding_model": "SGPT-125M-weightedmean-nli-bitfit",
"embedding_dimension": 768  },
"EASCfg": {
"url": "http://xx.pai-eas.aliyuncs.com/api/predict/chatllm_demo_glm2",
"token": "xxxxxxx=="  },
"vector_store": "Elasticsearch",
"ElasticSearchCfg": {
"ES_URL": "http://es-cn-xxx.elasticsearch.aliyuncs.com:9200",
"ES_USER": "elastic",
"ES_PASSWORD": "password",
"ES_INDEX": "test_index"  },
}


4. Upload:用户上传知识库文档

  • 支持多文件上传;支持文件夹上传;支持多种格式:TXT, DOCS, PDF等;
  • chunk-size:指定每个分块的大小,默认200;
  • chunk-overlap:相邻分块之间的重叠量,默认0;


5. Chat:知识问答

  • 支持三种问答方式:VectorStore、LLM、Langchain (VectorStore+LLM)


  • VectorStore:直接从检索分析服务 Elasticsearch 版中检索返回 topK 条相似结果;


  • LLM:直接与 EAS-LLM 对话,返回大模型的回答;


  • Langchain:将 Elasticsearch 检索返回后的结果与用户问题组装成可自定义 prompt,送入 EAS-LLM 服务,得到问答结果。


  • Retrieval top K answers:设置 Elasticsearch 返回的相似结果条数,默认为3;


  • Prompt Design:可用户自定义的 prompt,默认参考:"基于以下已知信息,简洁和专业地回答用户的问题。如果无法从中得到答案,请说 \"根据已知信息无法回答该问题\" 或 \"没有提供足够的相关信息\",不允许在答案中添加编造成分,答案请使用中文。\n=====\n已知信息:\n{context}\n=====\n用户问题:\n{question}";另外,英文场景下的"prompt_template"内容可以改为"Answer user questions concisely and professionally based on the following known information. If the answer cannot be obtained from it, please say 'Unable to answer the question based on the known information' or 'Insufficient relevant information provided'. Fabricated scores are not allowed to be added in the answer. The answer should be in English. \n=====\nKnown information:\n{context}\n=====\nUser question:\n{question}"


6. API 调用

查看调用信息,记录 URL 和 Token


  • /config: 上传config_es.json建立服务连接
  • Curl Command
curl-X'POST''http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com/config'-H'Authorization: xxxx=='-H'accept: application/json'-H'Content-Type: multipart/form-data'-F'file=@config_es.json'{"response": "success"}


  • Python Script
importrequestsEAS_URL='http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com'deftest_post_api_config():
url=EAS_URL+'/config'headers= {
'Authorization': 'xxxxx==',
    }
files= {'file': (open('config_es.json', 'rb'))}
response=requests.post(url, headers=headers, files=files)
ifresponse.status_code!=200:
raiseValueError(f'Error post to {url}, code: {response.status_code}')
ans=response.json()
returnans['response']


  • /uploadfile: 上传本地知识库文件
  • Curl Command
curl-X'POST''http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com/uploadfile'-H'Authorization: xxxx=='-H'accept: application/json'-H'Content-Type: multipart/form-data'-F'file=@docs/PAI.txt;type=text/plain'{"response": "success"}


  • Python Script
importrequestsEAS_URL='http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com'deftest_post_api_uploafile():
url=EAS_URL+'/uploadfile'headers= {
'Authorization': 'xxxxx==',
    }
files= {'file': (open('docs/PAI.txt', 'rb'))}
response=requests.post(url, headers=headers, files=files)
ifresponse.status_code!=200:
raiseValueError(f'Error post to {url}, code: {response.status_code}')
ans=response.json()
returnans['response']
# success


  • 知识问答:提供三种问答方式:(1)chat/vectorstore;(2)chat/llm;(3)/chat/langchain
  • Curl Command
curl-X'POST''http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com/chat/vectorstore'-H'Authorization: xxxx=='-H'accept: application/json'-H'Content-Type: application/json'-d'{"question": "什么是机器学习PAI?"}'curl-X'POST''http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com/chat/llm'-H'Authorization: xxxx=='-H'accept: application/json'-H'Content-Type: application/json'-d'{"question": "什么是机器学习PAI?"}'curl-X'POST''http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com/chat/langchain'-H'Authorization: xxxx=='-H'accept: application/json'-H'Content-Type: application/json'-d'{"question": "什么是机器学习PAI?"}'


  • Python Script
importrequestsEAS_URL='http://chatbot-langchain.xx.cn-beijing.pai-eas.aliyuncs.com'deftest_post_api_chat():    
url=EAS_URL+'/chat/vectorstore'# url = EAS_URL + '/chat/llm'# url = EAS_URL + '/chat/langchain'headers= {
'accept': 'application/json',
'Content-Type': 'application/json',
'Authorization': 'xxxxx==',
    }
data= {
'question': '什么是机器学习PAI?'    }
response=requests.post(url, headers=headers, json=data)
ifresponse.status_code!=200:
raiseValueError(f'Error post to {url}, code: {response.status_code}')
ans=response.json()
returnans['response']


7. 效果演示

  • 上传配置文件并解析;解析后相关参数自动填入;单击"Connect Elasticsearch"显示连接状态。(一般10s可连接成功)


  • 上传知识库文件,等到几秒后显示上传成功状态。

 

  • 聊天问答
  • Vectore Store


  • LLM


  • Langchain (Vectore Store + LLM)



相关文章
|
4月前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
927 125
|
3月前
|
人工智能 物联网 调度
边缘大型AI模型:协作部署与物联网应用——论文阅读
论文《边缘大型AI模型:协作部署与物联网应用》系统探讨了将大模型(LAM)部署于边缘网络以赋能物联网的前沿框架。针对传统云端部署高延迟、隐私差的问题,提出“边缘LAM”新范式,通过联邦微调、专家混合与思维链推理等技术,实现低延迟、高隐私的分布式智能。
838 6
边缘大型AI模型:协作部署与物联网应用——论文阅读
|
3月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1136 6
|
3月前
|
监控 安全 数据安全/隐私保护
55_大模型部署:从云端到边缘的全场景实践
随着大型语言模型(LLM)技术的飞速发展,从实验室走向产业化应用已成为必然趋势。2025年,大模型部署不再局限于传统的云端集中式架构,而是向云端-边缘协同的分布式部署模式演进。这种转变不仅解决了纯云端部署在延迟、隐私和成本方面的痛点,还为大模型在各行业的广泛应用开辟了新的可能性。本文将深入剖析大模型部署的核心技术、架构设计、工程实践及最新进展,为企业和开发者提供从云端到边缘的全场景部署指南。
|
3月前
|
机器学习/深度学习 人工智能 监控
Java与AI模型部署:构建企业级模型服务与生命周期管理平台
随着企业AI模型数量的快速增长,模型部署与生命周期管理成为确保AI应用稳定运行的关键。本文深入探讨如何使用Java生态构建一个企业级的模型服务平台,实现模型的版本控制、A/B测试、灰度发布、监控与回滚。通过集成Spring Boot、Kubernetes、MLflow和监控工具,我们将展示如何构建一个高可用、可扩展的模型服务架构,为大规模AI应用提供坚实的运维基础。
328 0
|
3月前
|
缓存 API 调度
70_大模型服务部署技术对比:从框架到推理引擎
在2025年的大模型生态中,高效的服务部署技术已成为连接模型能力与实际应用的关键桥梁。随着大模型参数规模的不断扩大和应用场景的日益复杂,如何在有限的硬件资源下实现高性能、低延迟的推理服务,成为了所有大模型应用开发者面临的核心挑战。
|
3月前
|
人工智能 监控 安全
06_LLM安全与伦理:部署大模型的防护指南
随着大型语言模型(LLM)在各行业的广泛应用,其安全风险和伦理问题日益凸显。2025年,全球LLM市场规模已超过6400亿美元,年复合增长率达30.4%,但与之相伴的是安全威胁的复杂化和伦理挑战的多元化
|
3月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
924 50
|
3月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
556 30

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版