【玩转数据系列十五】机器学习PAI为你自动写歌词,妈妈再也不用担心我的freestyle了(提供数据、代码)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 背景 最近互联网上出现一个热词就是“freestyle”,源于一个比拼rap的综艺节目。在节目中需要大量考验选手的freestyle能力,freestyle指的是rapper即兴的根据一段主题讲一串rap。

背景

最近互联网上出现一个热词就是“freestyle”,源于一个比拼rap的综艺节目。在节目中需要大量考验选手的freestyle能力,freestyle指的是rapper即兴的根据一段主题讲一串rap。freestyle除了考验一个人rap的技巧,其实我觉得最难的是如何在短时间内在脑海中浮现出有韵律的歌词。

本文会介绍如何自动生成歌词,到底什么工具有这样的功效呢?答案是PAI。PAI平台是阿里云人工智能平台,在上面可以通过最简单的拖拉拽的方式,完成对各种结构化以及非结构化数据的处理。因为有了PAI,这种自动生成歌词的事情都不再成为难题。我现在不光可以瞬间生成万首歌词,我还可以同时融合周杰伦、王力宏、林俊杰、汪峰的歌词风格在里面,因为PAI利用深度学习能力可以快速的学习这些歌手的所有歌曲并且实现自己创作歌词。不信?下面我就来show一下PAI的威力。

执行过程

  • 1.首先进入PAI:https://data.aliyun.com/product/learn
    开通机器学习以及机器学习内的GPU服务。
  • 2.训练数据说明
    这里我们的数据是一份txt文件,文件中包含了周杰伦、王力宏、林俊杰、汪峰的歌词,一共有接近300首歌,歌词都是去掉标题等干扰因素的(花了好几个小时整理)。数据截图:

  • 3.实验代码说明
    本实验使用的是PAI内置的深度学习框架Tensorflow,使用的了seq2seq以及RNN网络进行歌词语义的学习以及建模。使用train.py文件生成模型,使用predict.py文件进行预测。以下是部分网络结构搭建的截图,大家可以在下方找到源代码下载地址进行使用。(PS:实例代码虽然可以运行,但是数据IO采用的是低效方式,高效方式可以参考此文https://yq.aliyun.com/articles/126918)
        with tf.name_scope('model'):
            self.cell = rnn_cell.BasicLSTMCell(args.state_size)
            self.cell = rnn_cell.MultiRNNCell([self.cell] * args.num_layers)
            self.initial_state = self.cell.zero_state(
                args.batch_size, tf.float32)
            with tf.variable_scope('rnnlm'):
                w = tf.get_variable(
                    'softmax_w', [args.state_size, data.vocab_size])
                b = tf.get_variable('softmax_b', [data.vocab_size])
                with tf.device("/gpu:0"):
                    embedding = tf.get_variable(
                        'embedding', [data.vocab_size, args.state_size])
                    inputs = tf.nn.embedding_lookup(embedding, self.input_data)
            outputs, last_state = tf.nn.dynamic_rnn(
                self.cell, inputs, initial_state=self.initial_state)  
               
  • 4.数据上传
    将实验数据和代码文件打包上传到OSS(之所以打包是本文案例使用的是原生PYTHON的数据IO方式,需要代码和训练数据组成同一个tar.gz文件)。OSS是PAI可读的对象存储工具,具体方式可以参考此视频链接https://help.aliyun.com/video_detail/54945.html
  • 5.搭建实验
    在PAI的画布拖动OSS以及Tensorflow组件搭建如下实验,两个Tensorflow节点分别对应着训练和预测节点,先训练生成写歌模型,然后预测节点获取模型自动生成歌词。


配置对应的执行代码路径和输出路径,跟上面的OSS路径对应。下图是负责预测的Tensorflow节点配置。

点击运行,PAI就开始学习歌词并且尝试自己写作啦。

写歌结果

经过差不多20分钟的学习,PAI已经掌握了几位歌坛大神的歌词技巧,下面就看看PAI写出来的歌词是怎样的。(歌词需要在log中查看,可以参考https://yq.aliyun.com/articles/72841

歌词来了,

看上去写的歌还算通畅,没有出现特别多语病。当然,想写出更好的词,需要对训练模型的迭代次数、词长等参数进行不断调试,也可以多为PAI输送更多的歌词供训练,因为300多的样本还是略显单薄。

以上就是通过PAI自动写歌词的教程,希望对各位喜欢音乐和尝试做文本自动生成的同学有帮助,让我们一起freestyle起来!!

下载地址

1.数据以及代码已经打包,直接上传PAI配置路径即可使用:下载地址
2.PAI用户钉钉群:11768691
3.跟作者讨论,可以加我个人微信公众号留言(PAI使用问题请在钉钉群里问):
凡人机器学习

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
4月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
175 8
|
5月前
|
机器学习/深度学习 API 网络架构
"解锁机器学习超级能力!Databricks携手Mlflow,让模型训练与部署上演智能风暴,一触即发,点燃你的数据科学梦想!"
【8月更文挑战第9天】机器学习模型的训练与部署流程复杂,涵盖数据准备、模型训练、性能评估及部署等步骤。本文详述如何借助Databricks与Mlflow的强大组合来管理这一流程。首先需在Databricks环境内安装Mlflow库。接着,利用Mlflow跟踪功能记录训练过程中的参数与性能指标。最后,通过Mlflow提供的模型服务功能,采用REST API或Docker容器等方式部署模型。这一流程充分利用了Databricks的数据处理能力和Mlflow的生命周期管理优势。
203 7
|
5月前
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
83 9
|
5月前
|
机器学习/深度学习 存储 人工智能
【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战
【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战
563 0
|
6月前
|
机器学习/深度学习 存储 分布式计算
PAI机器学习平台如何进行分布式训练?
【7月更文挑战第1天】PAI机器学习平台如何进行分布式训练?
155 1
|
6月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
【7月更文挑战第27天】在数据驱动时代,Python以丰富的库成为数据科学首选。Scikit-learn因简洁高效而备受青睐,引领数据分析革命。本文引导您使用Scikit-learn简化机器学习流程。首先通过`pip install scikit-learn`安装库。接着使用内置数据集简化数据准备步骤,例如加载Iris数据集。选择合适的模型,如逻辑回归,并初始化与训练模型。利用交叉验证评估模型性能,获取准确率等指标。最后,应用训练好的模型进行新数据预测。Scikit-learn为各阶段提供一站式支持,助力数据分析项目成功。
88 0
|
6月前
|
机器学习/深度学习 人工智能 算法
【机器学习】大模型训练的深入探讨——Fine-tuning技术阐述与Dify平台介绍
【机器学习】大模型训练的深入探讨——Fine-tuning技术阐述与Dify平台介绍
|
8月前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI产品使用合集之机器学习PAI可以通过再建一个done分区或者使用instance.status来进行部署吗
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
8月前
|
机器学习/深度学习 人工智能 API
人工智能平台PAI产品使用合集之机器学习PAI中的sample_weight怎么加在样本中
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
8月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之机器学习PAI EasyRec中的eval_config的使用方法是什么
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

相关产品

  • 人工智能平台 PAI