Spark Standalone环境搭建及测试

简介: Spark Standalone环境搭建及测试

1.Spark Standalone环境搭建介绍


Apache Spark是目前最流行的大数据处理框架之一,可用于分布式数据处理和分析。在Standalone模式下搭建Spark集群是学习和开发Spark应用程序的良好起点。


2.搭建环境准备:


本次用到的环境有:

Java 1.8.0_191

Spark-2.2.0-bin-hadoop2.7

Hadoop 2.7.4

Oracle Linux 7.4


3.搭建步骤:


1.解压Spark压缩文件至/opt目录下

tar -zxvf  ~/experiment/file/spark-2.2.0-bin-hadoop2.7.tgz  -C  /opt

2.修改解压后为文件名为spark

mv /opt/spark-2.2.0-bin-hadoop2.7 /opt/spark

3.复制spark配置文件,首先在主节点(Master)上,进入Spark安装目录下的配置文件目录{ $SPARK_HOME/conf },并复制spark-env.sh配置文件:

cd /opt/spark/conf
cp spark-env.sh.template spark-env.sh


4.Vim编辑器打开spark配置文件

vim spark-env.sh

5.按键Shift+g键定位到最后一行,按键 i 切换到输入模式下,添加如下代码,注意:“=”附近无空格:

export JAVA_HOME=/usr/lib/java-1.8
export SPARK_MASTER_HOST=master
export SPARK_MASTER_PORT=7077

按键Esc,输入:wq保存退出

6.复制一份spark的slaves配置文件

cp slaves.template slaves

7.修改spark的slaves配置文件

vim slaves

8.每一行添加工作节点(Worker)名称,按键Shift+g键定位到最后一行,按键 i 切换到输入模式下,添加如下代码

slave1
slave2

按键Esc,输入:wq保存退出

9.复制一份spark-defaults.conf

cp spark-defaults.conf.template spark-defaults.conf

10.通过远程scp指令将Master主节点的Spark安装包分发至各个从节点,即slave1和slave2节点

scp -r /opt/spark/ root@slave1:/opt/
scp -r /opt/spark/ root@slave2:/opt/


11.配置环境变量:分别在slave1和slave2节点上配置环境变量,修改【/etc/profile】,在文件尾部追加以下内容

vim /etc/profile

按键Shift+g键定位到最后一行,按键 i 切换到输入模式下,添加如下代码

#spark install
export SPARK_HOME=/opt/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

主节点(master)上执行截图,如下:

从节点1(Slave1)上执行截图,如下:

从节点2(Slave2)上执行截图,如下:

12.按键Esc,按键:wq保存退出

13.分别在Slave1和Slave2上,刷新配置文件

source /etc/profile

14.开启standalone集群守护进程,分别开启Standalone集群的守护进程:Master和Worker。注意:需要在主节点执行该操作!

start-master.sh     
start-slaves.sh   

15.Spark独立集群搭建成功后,查看后台守护线程,如图所示,即Standalone模式搭建成功!!

jps

16.查看WebUI监控,独立集群管理器开启后,可以通过WebUI监控界面查看集群管理器的相关信息,地址为:http://master:8080 如图所示

17.开启spark-shell会话,向独立集群管理器提交应用,需要把spark://masternode:7070作为主节点参数传–master。指令如下

spark-shell --master spark://master:7077

所有配置完成

目录
相关文章
|
3月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
251 3
|
14天前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
40 3
|
1月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
24 1
|
1月前
|
分布式计算 大数据 Spark
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
39 1
|
1月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
38 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
1月前
|
存储 SQL 分布式计算
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(一)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(一)
38 0
|
2月前
|
机器学习/深度学习 人工智能 文字识别
AI计算机视觉笔记二十:PaddleOCR环境搭建及测试
OCR技术广泛应用于日常生活中,与人脸识别一样常见。PaddleOCR是一个基于飞桨的OCR工具库,具有超轻量级中文OCR模型,支持中英文数字组合、竖排及长文本识别。本文档详细介绍了PaddleOCR的学习过程,包括环境搭建、安装、样本标注及测试步骤。使用AutoDL云平台进行环境创建,并提供了详细的命令行操作指南,帮助用户顺利完成PaddleOCR的部署与测试。
|
2月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记十四:YOLOV5环境搭建及测试全过程
本文详细记录了在Windows 10环境下从零开始搭建yolov5环境并进行测试的全过程,涵盖环境配置、依赖安装及模型测试等关键步骤。文章首先介绍了所需环境(Python 3.8、yolov5-5.0),接着详细说明了如何使用Miniconda3创建与激活虚拟环境,并通过具体命令演示了如何下载安装yolov5及相关依赖库。最后,通过一系列命令展示了如何下载预训练模型并对示例图像进行目标检测,同时解决了一些常见错误。适合初学者跟随实践。如需转载,请注明原文出处。
|
3月前
|
Web App开发 测试技术 API
Web自动化测试框架(基础篇)--Selenium WebDriver工作原理和环境搭建
本文详细介绍了Selenium WebDriver的工作原理,包括其架构、通信机制及支持的浏览器,并指导读者如何在Python环境下搭建Selenium WebDriver的测试环境,从安装Python和Selenium库到编写并运行第一个自动化测试脚本。
222 0
|
5月前
|
分布式计算 Shell Linux
Spark-集群安装、部署、启动、测试(1.6.3)稳定版
Spark-集群安装、部署、启动、测试(1.6.3)稳定版
63 0