【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序

简介: 【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序

1.直接插入排序

直接插入排序的思想就是从左到右进行遍历,在遍历过程中将当前的元素插入到前面(已经有序)合适的位置,直到遍历完成。

直接插入排序的特性:

  • 元素集合越接近有序,直接插入排序算法时间效率越高;
  • 时间复杂度:O(N^2);
  • 空间复杂度:O(1);
  • 稳定性:稳定。

排序的稳定性:指的是保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

代码实现:

// 插入排序
void InsertSort(int* a, int n)
{
  for (int i = 0; i < n-1; i++)
  {
    int end = i;
    int tmp = a[end + 1];//保存待插入的值
    while (end >= 0)
    {
      if (tmp < a[end])
      {
        a[end + 1] = a[end];//向后覆盖
      }
      else//因为此时前面已经是有序序列,如果tmp>当前值,证明比前面都大,所以break跳出即可
      {
        break;
      }
      end--;
    }
    a[end+1]= tmp;
  }
}

2.希尔排序

希尔排序与直接插入排序同属插入排序方法,也就是说希尔排序也是靠向前插入的思路进行的。

不同的是,希尔排序先进行预排序,将待排序序列调整的接近有序后,再进行一次直接插入排序。

希尔排序利用了插入排序的特性:待排序序列越接近有序,插入排序时间效率越高。

那么如何进行预排序呢?

希尔排序将待排序序列分组,假设定义一个变量 gap ,那么间隔gap的数据我们分为一组,如图:

预排序阶段:我们以分组情况为基础,每组内部进行直接插入排序,每完成一轮,gap=gap/3-1。


注意:预排序阶段的边界设计很多可以参照直接插入排序,就是将1改为了gap而已,不理解时可以代入直接插入排序进行理解。


直接插入排序阶段:直到gap的值为1的时候,我们发现此时就是直接插入排序了,经过这轮排序就能得到最终的有序序列。


希尔排序的特性总结:

希尔排序是对直接插入排序的优化。

当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定。大致为O(N^1.25)到O(1.6*N^1.25)。

稳定性:不稳定


代码实现:

// 希尔排序
void ShellSort(int* a, int n)
{
  int gap = n;
  while (gap > 1)
  {
    gap = gap / 3 + 1;//gap递减普遍取这种,也有取gap=gap/2的
    for (int i = 0; i < n - gap; i++)
    {
      int end = i;
      int tmp = a[end + gap];
      while (end >= 0)
      {
        if (tmp < a[end])
        {
          a[end + gap] = a[end];
                    end -= gap;
        }
        else
        {
          break;
        }
      }
      a[end + gap] = tmp;
    }
  }
}

3.直接选择排序

选择排序的思想是每遍历一遍选出最小的值,放到最开始的位置。

我们对该思想优化,每次遍历选出最大值和最小值,分别放到两边。

直接选择排序的特性:

  • 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  • 时间复杂度:O(N^2)
  • 空间复杂度:O(1)
  • 稳定性:不稳定

代码实现:

// 选择排序
void SelectSort(int* a, int n)
{
  int left = 0;
  int right = n - 1;
  while (right > left)
  {
    int maxi = left;
    int mini = left;
    for (int i = left+1; i <=right ; i++)
    {
      if (a[i] > a[maxi])
      {
        maxi = i;
      }
      if (a[i] < a[mini])
      {
        mini = i;
      }
    }
    swap(&a[left], &a[mini]);
    if (maxi == left)//假设max被换走了,恢复一下
    {
      maxi = mini;
    }
    swap(&a[right], &a[maxi]);
    right--;
    left++;
  }
}

4.堆排序

堆排序首先要介绍的是向下调整算法。

向下调整算法的前提是左右子树是堆。

以小堆为例:

1.给定向下调整的起点(双亲节点下标)和节点总数,根据起点下标计算孩子节点下标。

注意:向下调整时,若有两个孩子节点,则需要确保调整的是较大的孩子节点。

2.比较孩子节点与双亲节点数值大小,若孩子节点小于双亲节点,则交换两者,并将双亲节点的下标更新为之前的孩子节点下标,根据最新的双亲节点下标重新计算孩子节点下标,重复这一过程直到孩子节点超出节点总数。

对于堆排序来说:

以升序为例:

首先构建大堆(推荐使用向下调整),此时堆顶元素一定为最大值,然后将堆顶元素与最后一个节点交换,此时最大值就放到了整个数组的最后面,然后除了最后一个值以外,其他的数据再向下调整,调整完成后堆顶元素为次大值,再与数组倒数第二个位置的值交换,这样依此往复就得到了升序数组。


注意:升序建大堆,降序建小堆。

堆排序的特性总结:

  • 堆排序擅于处理庞大数据。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(1)
  • 稳定性:不稳定

代码实现:

// 堆排序
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    // 找出小的那个孩子
    if (child + 1 < n && a[child + 1] > a[child])
    {
      ++child;
    }
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      // 继续往下调整
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
void HeapSort(int* a, int n)
{
  // 向下调整建堆
  // O(N)
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  // O(N*logN)
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    --end;
  }
}
目录
相关文章
|
22天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
34 1
|
26天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
77 4
|
23天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
23天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
97 23
|
22天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
186 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
32 1
|
24天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
44 5
|
1月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。