【算法分析与设计】递归与分治策略(二)

简介: 【算法分析与设计】递归与分治策略

2、二分搜索技术

  给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x。

  分析:

  该问题的规模缩小到一定的程度就可以容易地解决

  该问题可以分解为若干个规模较小的相同问题;

  分解出的子问题的解可以合并为原问题的解

  分解出的各个子问题是相互独立的

  分析:很显然此问题分解出的子问题相互独立,即在a[i]的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。

  据此容易设计出二分搜索算法

template<class Type> 
int BinarySearch(Type a[], const Type& x, int l, int r)
{
     while (r >= l){ 
        int m = (l+r)/2;
        if (x == a[m]) return m;
        if (x < a[m]) r = m-1; else l = m+1;
        }
    return -1;
} 

  算法复杂度分析:

  每执行一次算法的while循环, 待搜索数组的大小减少一半。因此,在最坏情况下,while循环被执行了O(logn) 次循环体内运算需要O(1) 时间,因此整个算法在最坏情况下的计算时间复杂性为O(logn)


3、大整数的乘法

  请设计一个有效的算法,可以进行两个n位大整数的乘法运算。

  小学的方法:O(n2) ×效率太低

  分治法:

  XY = ac 2n + ((a-b)(d-c)+ac+bd) 2n/2 + bd

  XY = ac 2n + ((a+b)(c+d)-ac-bd) 2n/2 + bd

  细节问题:两个XY的复杂度都是O(nlog3),但考虑到a+b,c+d可能得到m+1位的结果,使问题的规模变大,故不选择第2种方案。

  小学的方法:O(n2)   ×效率太低

  分治法: O(n1.59)   √较大的改进


  如果将大整数分成更多段,用更复杂的方式把它们组合起来,将有可能得到更优的算法

  最终的,这个思想导致了快速傅利叶变换(Fast Fourier Transform)的产生。该方法也可以看作是一个复杂的分治算法。


4、Strassen矩阵乘法

  传统方法:O(n3)

  若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i][j],需要做n次乘法和n-1次加法。因此,算出矩阵C的 个元素所需的计算时间为O(n3)

  使用与上例类似的技术,将矩阵A,B和C中每一矩阵都分块成4个大小相等的子矩阵。由此可将方程C=AB重写为:

  由此可得:

  传统方法:O(n3)

  分治法:

  为了降低时间复杂度,必须减少乘法的次数。

  传统方法:O(n3)

  分治法: O(n2.81)

  更快的方法??

  Hopcroft和Kerr已经证明(1971),计算2个2×2矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再基于计算2×2矩阵的7次乘法这样的方法了。或许应当研究3×3或5×5矩阵的更好算法。

  在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是 O(n2.376)

  是否能找到O(n2)的算法?


5、棋盘覆盖

  在一个2k×2k 个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖

  当k>0时,将2k×2k棋盘分割为4个2k-1×2k-1 子棋盘(a)所示

  特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如 (b)所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘1×1。

void chessBoard(int tr, int tc, int dr, int dc, int size){
      if (size == 1) return;
      int t = tile++,  // L型骨牌号
        s = size/2;  // 分割棋盘
      // 覆盖左上角子棋盘
      if (dr < tr + s && dc < tc + s)
         // 特殊方格在此棋盘中
         chessBoard(tr, tc, dr, dc, s);
      else {// 此棋盘中无特殊方格
         // 用 t 号L型骨牌覆盖右下角
         board[tr + s - 1][tc + s - 1] = t;
         // 覆盖其余方格
         chessBoard(tr, tc, tr+s-1, tc+s-1, s);}
      // 覆盖右上角子棋盘
      if (dr < tr + s && dc >= tc + s)
         // 特殊方格在此棋盘中
         chessBoard(tr, tc+s, dr, dc, s);
      else {// 此棋盘中无特殊方格
         // 用 t 号L型骨牌覆盖左下角
            board[tr + s - 1][tc + s] = t;
         // 覆盖其余方格
         chessBoard(tr, tc+s, tr+s-1, tc+s, s);}
        // 覆盖左下角子棋盘
      if (dr >= tr + s && dc < tc + s)
         // 特殊方格在此棋盘中
         chessBoard(tr+s, tc, dr, dc, s);
      else {// 用 t 号L型骨牌覆盖右上角
         board[tr + s][tc + s - 1] = t;
         // 覆盖其余方格
         chessBoard(tr+s, tc, tr+s, tc+s-1, s);}
      // 覆盖右下角子棋盘
      if (dr >= tr + s && dc >= tc + s)
         // 特殊方格在此棋盘中
         chessBoard(tr+s, tc+s, dr, dc, s);
      else {// 用 t 号L型骨牌覆盖左上角
         board[tr + s][tc + s] = t;
         // 覆盖其余方格
         chessBoard(tr+s, tc+s, tr+s, tc+s, s);}
   }   

  T(n)=O(4k) 渐进意义下的最优算法


6、合并排序

  基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合

  T(n)=O(nlogn) 渐进意义下的最优算法

void MergeSort(Type a[], int left, int right)
   {
      if (left<right) {//至少有2个元素
      int i=(left+right)/2;  //取中点
      mergeSort(a, left, i);
      mergeSort(a, i+1, right);
      merge(a, b, left, i, right);  //合并到数组b
      copy(a, b, left, right);    //复制回数组a
      }
   }

  算法mergeSort的递归过程可以消去。

  最坏时间复杂度:O(nlogn)

  平均时间复杂度:O(nlogn)

  辅助空间:O(n)

相关文章
|
1月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
142 26
|
1月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
164 3
|
1月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
105 4
|
2月前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
410 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
28天前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
|
1月前
|
运维 算法 安全
基于变异粒子群算法的主动配电网故障恢复策略(Matlab代码实现)
基于变异粒子群算法的主动配电网故障恢复策略(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 5G
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
118 0
|
28天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
146 3
|
1月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
22天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。

热门文章

最新文章