大模型应用疯狂加速,洗牌却在静悄悄进行了

简介: 随着未来不断有新的企业通过备案,“大模型+”的应用拐点正在到来。

在被誉为“科技企业营销圣经”的《跨越鸿沟》一书中,杰弗里·摩尔写道:“高科技产品面世过程中,最危险、最关键的一点,就是由少数有远见者所主宰的早期市场,向实用主义者占支配地位的主流市场过渡。”此刻,狂飙突进已半年有余的国内生成式人工智能(AIGC)市场,正面临着这个关键的过渡。

截至8月底,首批8家AI大模型企业通过备案。与上半年“甚嚣尘上”的行业境况不同,具备实力且具备满腔“产业抱负”的实力型玩家,总是姗姗来迟,但却总是能够一鸣惊人,为产业的大规模应用创造机会。目前来看,随着未来不断有新的企业通过备案,“大模型+”的应用拐点正在到来。

“大模型+”应用拐点加速到来

8月份刚刚过去,9月初百度就迫不及待地对外公布了文心一言大模型开源。与此同时,“姗姗来迟”的腾讯混元大模型,一亮相便“秀”起了“肌肉”,科大讯飞与华为合作发布“星火一体机”,进一步把大模型端侧应用摆在了台面上。一波接一波的行业浪潮席卷而来,正推动整个“大模型+”应用时代加速到来。

首先,大模型从C端应用逐渐转向B端应用领域,以“实用”为导向的大模型日渐成为行业趋势。自从去年12月ChatGPT,在短短一个月之内实现月活破亿之后,围绕整个C端市场的AI大模型玩家如百度等,就开始大规模地涌入该领域,一时之间C端大模型应用迎来了外界的一致关注。但进入下半年以后,市面上越来越多的“面向B端”的应用开始出现,更加“实用”的行业大模型也在成群结队地出现,大大加速了生成式AI产业化的进程。比如,京东发布了言犀大模型、京医千询大模型,携程发布了携程问道大模型,网易有道发布了基于教育的子曰大模型,用友发布了用友GPT大模型等等。

相比通用大模型厂商而言,垂直大模型厂商在相关行业深耕已久,因而在寻找产业机会方面往往走得更加深入。以网易有道、京东两家为例,网易有道在教育领域深耕已久,它在长期深耕行业的过程中,不仅积累了庞大的用户和教育行业数据,还积累了相对应的高质量数据,这使其在做教育大模型过程中,拥有更多比较优势。无独有偶,京东在零售、大健康领域广有布局,这使其在构建产业大模型和京医大模型方面,拥有坚实根基;而携程则在文旅行业深耕已久,积累了广泛的文旅产业链数据和资源。

显然,相比通用大模型厂商而言,围绕垂直领域的行业大模型,不仅可以依靠专业数据让大模型更加“实用”,还可以在特定领域发挥独特作用,帮助行业尽快完成数字化转型。

其次,具备通用能力的大型云服务企业,正在加速与各路行业大模型企业展开合作,新的大模型生产机制正在成型。目前业内包括百度、腾讯、阿里、华为等主要云厂商,都纷纷依托自身的技术优势、团队优势和资金支持,在通用大模型领域实现抢跑。除此之外,各主要厂商还联合行业头部企业,推出行业大模型解决方案。

比如,腾讯云联合行业头部企业,已为文旅、政务、金融等10余个行业,提供了50多个大模型行业解决方案。华为旗下盘古大模型,更是可以提供5个基础大模型+N个行业大模型+X个场景模型的三层解耦架构,目前已经应用到了铁路、矿山、能源、气象、政务等诸多领域。阿里云更是对外开放了“通义千问”的全部能力,帮助企业结合自身的行业知识和应用场景,训练自己的企业大模型;加上目前已经开源的文心一言,由大的云平台提供包括云服务、算力、通用大模型工具支持等基础设施,各行业头部企业提供专业经验和数据训练的大模型生产机制已经基本成型。

志在必得的腾讯

对于大模型的发展,腾讯高层显然很早之前就已经定下了调子,但其推出的时间却在一众巨头中最晚。在上半年如火如荼的大模型混战中,腾讯的大模型在业内一直是“只闻其声、不见其名”的存在。但从9月其正式面世之后的外界反应来看,此前“默默无闻”的腾讯大模型,更多是在“厚积薄发”。

9月7日腾讯正式对外发布了腾讯混元大模型,据了解该模型拥有超千亿参数规模,预训练语料超过2万亿Tokens,并已接入腾讯云、腾讯广告、腾讯游戏、腾讯金融科技、腾讯会议、腾讯文档等50多个腾讯业务。而且在国家公布的首批大模型厂商中,腾讯混元大模型赫然在列。同时,腾讯混元大模型还宣布对外开放,千行百业的人都可以通过API调用混元,或者将其作为产业底座,为不同产业场景构建大模型应用,不难看出腾讯对大模型的“志在必得”。

首先,腾讯构建了“更强”的“探真”技术方法,这使其具备更强的信息可信度,极大增强了大模型自身的实用性。基于全网的数据检索和生成,是大模型的核心能力之一。值得一提的是,无论是基于GPT-3.5还是国内其他大模型,源于错误信息带来的错误答案,依然不可避免。但腾讯混元大模型却基于自身的技术能力,保证正确答案的输出。

与业界消除“幻觉”的通用做法不同,混元大模型并没有为大模型增加搜索或者知识图谱等外挂,而是从源头上解决问题。具体来说,混元大模型从第一行代码开始,就采用了预训练阶段优化目标函数的“探真”技术方法。据业内专业人士介绍,该方法与常见的开源大模型相比,能有效降低幻觉30%到50%。

除了“探真”能力优秀之外,腾讯混元的另一大超强能力在于其支持超长文本输出。尽管目前多模态正在成为主流大模型演进方向,但在文本输出方面,包括GPT-3.5和GPT-4在内的大模型,都很难支持1000字以上的文本输出,但腾讯混元通过位置编码优化提高了超长文的处理效果和性能,已经具备输出4000多字的完整答案的能力。

其次,腾讯构建了从软到硬的全流程基础设施,这让腾讯具备了更强的“全局优化”能力。从自研的星星海服务器,到新一代HCC高性能计算集群,再到自研的星脉高速网络,腾讯已经为自己打造了一整套面向AIGC的高性能智算网络。据腾讯内部负责人介绍,目前腾讯云已经可支持超过10万张卡并行计算的大规模训练集群,万亿参数大模型可以在四天之内完成。

目前,腾讯云已经建立起了围绕大模型的全套能力,包括高性能算力集群、云原生数据湖仓和向量数据库等数据处理引擎,以及模型安全、支持模型训练和精调的工具链等,企业和开发者都可以根据自己的需求,灵活选择产品,降低大模型的训练成本。

不甘落后的科大讯飞

除了腾讯大模型之外,在大模型上已经先行一步的科大讯飞也是不甘落后,不仅积极参与通用大模型的建设,还持续发力行业大模型的建设。目前科大讯飞的大模型已经具备7大能力,分别为:文本生成、语言理解、知识问答、逻辑推理、数学和多模态能力,并且这种能力还在不断提升。而基于大模型开发所需的巨大投入量,科大讯飞也做了多方面的准备。

一方面,科大讯飞积极展开与业内巨头的合作,强化星火大模型的技术实力。早在今年8月中旬,科大讯飞就与华为共同发布星火一体机,让所有企业都可以在国产自主创新平台上私有化部署大模型。一来,星火一体机基于星火认知大模型,针对污语料和幻觉问题,形成了“立体化”的内容安全机制。二来,星火一体机基于昇腾AI硬件、昇思AI开源框架,提供业界领先的大模型训练、推理能力,为大模型全流程创新提供坚实的自主创新算力底座。

具体来说,讯飞星火认知大模型基于训练推理一体化设计,实现大模型稀疏化、低精度量化的技术突破,能高效适配昇腾AI,加速大模型的行业落地应用和迭代;与此同时,以昇腾AI为核心,软硬件协同优化,构建算力集中、协同优化、供给稳定、数据安全的大模型训练集群,这些都可以强化星火大模型的自身实力。

另一方面,科大讯飞积极推动与自身业务场景的整合,加速大模型的场景落地。除了不断强化自己核心能力之外,科大讯飞还结合自身的业务场景,推动大模型在办公、政务、电力、教育、医疗、工业、司法、金融等行业的场景落地。星火一体机内已涵盖办公、代码、运维、客服、营销、采购等10多个场景包,支持对话开发、任务编排、插件执行、知识接入、提示工程等5种定制优化模式,并将持续拓展更多专业场景和模式优化,为客户快速定制企业专属大模型。

总的来看,科大讯飞在大模型上,外部合作和内部场景落地相结合的方式,很好地保证了其大模型产业化的加速落地。

大模型大洗牌正在加速到来

在众多头部巨头和行业巨头的共同努力之下,“百模大战”甚至“千模大战”的局面正在加速形成。而在这种的形势之下,围绕大模型的“行业大洗牌”或将提前到来。

首先,产品能力的比拼已经初见分晓。据知名厂商IDC依据算法模型、通用能力、创新能力、平台能力和安全可解释等五方面的要求,评估出了目前市面上在大模型方面综合评分最高的三家厂商,分别是百度、阿里巴巴、科大讯飞。不过由于这个数据排出的时间较早,未考虑到腾讯和华为的产品能力,所谓真实的综合技术实力方面,排名靠前的依旧会是BATH这些行业巨头。

但各家的能力并不相同,也各有侧重。具体来说,百度的能力在于其具有“芯片—框架—模型—应用”四层技术栈完整布局的独特优势:芯片层—昆仑芯、框架层—飞浆、模型层—文心大模型,以及各种AI的落地应用。阿里的能力也相近,其强大之处在于围绕云搭建起了一整个的大模型基础设施;华为的能力在于强大的基础技术能力,以及广泛的终端生态应用和B端应用能力。在BATH之外,其他大模型厂商依然排在第二梯队、第三梯队,产品层面的分化已经出现。

其次,是大模型生态服务能力的比拼已然拉开序幕。以阿里为例,阿里不仅推出了通义千问大模型,还推出了魔搭大模型社区,还有众多的生态合作伙伴;百度在这方面也不遑多让,不仅有基于大模型的技术能力,还有广泛的生态伙伴,推理能力和速度伴随着大模型的版本更新,也在日新月异;作为同级别大厂,华为、腾讯等厂商自然也具备类似能力。不难预见,未来各路厂商围绕预训练、逻辑推理等相关方面的技术服务,将成为行业竞争的常态。

当然,无论是产品维度还是服务能力,最终都要落地到产业实践上。从行业覆盖来看,从文心大模型出发,百度已经在能源、汽车、政务、交通、金融等重点领域布局11个行业大模型,将大模型融入到垂直领域,真正做到产业实践和商业落地。阿里、腾讯、华为等也覆盖电商零售、物流、社交、矿业等诸多行业,产业化落地也在快速提升。

而随着各大平台的大模型,在产品、生态服务和产业实践上的全面展开,大模型的大洗牌正在加速到来。

目录
相关文章
|
3月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
207 2
|
3月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
679 2
|
2月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
142 2
|
3月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
100 2
|
3月前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
51 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
2月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
77 2
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
114 3
【机器学习】大模型驱动下的医疗诊断应用
|
2月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
210 1
|
2月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
130 1

热门文章

最新文章