用 AI 修复亚运珍贵史料——基于Stable Diffusion WebUI 体验AIGC加持的修复能力

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 2023年,正值亚运110周年,也是第19届杭州亚运会即将举办之际,阿里云与亚奥理事会合作,发起“历久弥新——用 AI 修复亚运会珍贵史料”活动(以下简称“本活动”),开发者使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威,并有机会入选“亚运史上第一个 AI 修复特展—— 1974 年德黑兰亚运会特展”。

用 AI 修复亚运珍贵史料——基于Stable Diffusion WebUI 体验AIGC加持的修复能力

大家好,我是博主Lingxw_w!在开始介绍我的修复之前,首先看一下我生成的照片:
image.png
image.png

1、背景介绍

2023年,正值亚运110周年,也是第19届杭州亚运会即将举办之际,阿里云与亚奥理事会合作,发起“历久弥新——用 AI 修复亚运会珍贵史料”活动(以下简称“本活动”),开发者使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威,并有机会入选“亚运史上第一个 AI 修复特展—— 1974 年德黑兰亚运会特展”。今天使用开源社区的高质量图像修复、去噪、上色等算法,并使用 Stable Diffusion WebUI 进行交互式图像修复。

2、领取对应的试用产品

在活动当前页领取对应的产品,准备环境和资源;
image.png
我申请试用的是PAI-DSW免费资源包,当前可申请免费使用的资源类型有:ecs.gn6v-c8g1.2xlarge、ecs.g6.xlarge、ecs.gn7i-c8g1.2xlarge。
image.png
image.png

开通成功后单击进入PAI控制台,在默认工作空间中创建DSW实例。
image.png

创建实例:
image.png
选择官方镜像中的stable-diffusion-webui-env:pytorch1.13-gpu-py310-cu117-ubuntu22.04。
image.png
注意这里不用添加VPC、并且实例的名字不要和教程中的一样,否则会报错。

3、修复步骤

3.1图形去噪

进入PAI-DSW开发环境。
image.png
打开:
image.png
基于Modelscope实现:https://www.modelscope.cn/models?name=nafnet&page=1

! pip install modelscope
download_from_oss('aigc-data/restoration/repo/','nafnet.zip')

根据需要运行合适的推理任务

# 去模糊
!python NAFNet/demo.py --task deblur --input_dir input --result_dir results
# 去噪
!python NAFNet/demo.py --task denoise --input_dir input --result_dir results
# 去运动模糊
!python NAFNet/demo.py --task de_motion_blur --input_dir input --result_dir results

image.png
查看结果:
image.png

3.2图像超分

这部分使用的是RealESRGAN 算法;该算法发表于ICCV workshop 2021 用于对图像超分。
该算法提供3个预训练模型:
-RealESRNet_x4plus:基础预模型
-RealESRGAN_x4plus:用GAN Loss训练的RealESRNet
-RealESRGAN_x4plus_anime_6B用动漫数据集微调过的RealESRGAN_x4plus

download_from_oss('aigc-data/restoration/repo/','realesrgan.zip')
# 动漫微调模型
!python Real-ESRGAN/demo.py --model_name RealESRGAN_x4plus_anime_6B --input input/ --output results --tile 512
# realesrgan
!python Real-ESRGAN/demo.py --model_name RealESRGAN_x4plus --input input/ --output results --tile 512
# realesrnet 基础模型
!python Real-ESRGAN/demo.py --model_name RealESRNet_x4plus --input input/ --output results --tile 512

完成图形超分。
image.png

3.3上色

基于Modelscope,使用不同的算法进行图像上色及色彩增强。
DDC:https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary
DDC发表于 ICCV 2023,色彩鲜艳

! pip install modelscope
download_from_oss('aigc-data/restoration/repo/','color.zip')
# DDC no enhance
!python Colorization/demo.py --algo DDC --input_dir input --result_dir results

# DDC with enhance
!python Colorization/demo.py --algo DDC --input_dir input --result_dir results --use_enhance

# DeOldify no enhance
!python Colorization/demo.py --algo DeOldify --input_dir input --result_dir results

# DeOldify with enhance
!python Colorization/demo.py --algo DeOldify --input_dir input --result_dir results --use_enhance

完成DDC的图像上色;
image.png
image.png

3.4局部重绘

通过Unicolor+SAM的有条件的上色方案,我们可以指定修改位置即颜色,对局部颜色细节进行调整。下载代码及预训练文件:

# 下载/解压 约10min
download_from_oss('aigc-data/restoration/repo/','sam_unicolor.zip')

加载模型文件和待处理的图片;

import os
import cv2
from PIL import Image
import numpy as np
from unicolor.sample.colorizer import Colorizer
from unicolor.sample.utils_func import *
from unicolor.sample.SAM.segment_anything import sam_model_registry, SamPredictor
import sys
import numpy as np

读取上色前的黑白图片以及通过上述无参考的DDC/DeOldify获取的上色图片,并画出坐标系方便选取参考点和参考格

#读取和初始化SAM和Unicolor模型
device = "cuda"
sam_checkpoint = 'unicolor/sample/sam_vit_h_4b8939.pth'
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)


ckpt_file = 'unicolor/framework/checkpoints/unicolor_mscoco/mscoco_step259999'
colorizer = Colorizer(ckpt_file, device, [256, 256], load_clip=True, load_warper=True) # it will change the workdir
os.chdir('../../') # change back

image.png

4、总结、

在这个活动中,充分发挥了阿里云的先进AI技术,对亚运会的珍贵历史照片进行修复和重制。这一过程包括超分辨率处理,去除噪声,上色以及局部重绘等四个关键步骤。通过这些步骤,亚运会的老照片焕发出崭新的生机,重新展现了历史瞬间的细节和色彩。

修复后的照片不仅让人们能够更清晰地看到过去的辉煌瞬间,还让年轻一代更深入地了解亚运历史的丰富内涵。这个活动也唤起了人们对亚运会的热情,为即将到来的第19届杭州亚运会增添了更多的期待和助威声。

此次活动的成功展示了科技和体育的结合,以及人工智能在文化保护和传承方面的巨大潜力。阿里云与亚奥理事会的合作为亚运会的持续发展和传承注入了新的动力,同时也将亚运历史的珍贵财富分享给更多人。我们期待着在未来看到更多这样的创新举措,将亚运的光辉历史传承下去,继续激发人们对体育和文化的热爱。

相关实践学习
通义万相文本绘图与人像美化
本解决方案展示了如何利用自研的通义万相AIGC技术在Web服务中实现先进的图像生成。
目录
相关文章
|
机器学习/深度学习 人工智能 自动驾驶
「AIGC」Agent AI智能体的未来:技术、伦理与经济的交汇点
Agent AI智能体融合机器学习与深度学习,推动社会效率与创新,但也引发伦理、法律及就业挑战。技术上,它们能自我优化、积累知识,如自动驾驶汽车通过学习改善驾驶。伦理上,需建立AI准则,确保透明度和责任归属,如医疗AI遵循道德原则。经济上,AI改变就业市场结构,创造新职业,如AI顾问,同时要求教育体系更新。未来,平衡技术进步与社会影响至关重要。
843 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
|
6月前
|
人工智能 自然语言处理 搜索推荐
年终盘点AIGC:生成式AI一路生花,互联网开始步入大模型时代
本文探讨了自ChatGPT发布以来,生成式AI对互联网和人们生活带来的深刻影响。文章分析了从“移动互联网”到“智能互联网”的转变,强调AIGC如何通过自然语言交互提升信息获取效率,并在内容创作等领域展现巨大潜力。同时,作者指出当前AIGC应用开发存在的问题,如过度聚焦对话助手,建议开发者探索更深层次的场景结合。最后,文章展望了AIGC未来可能的法律监管及现象级产品的出现,并鼓励普通人善用AIGC工具提升效率,保持创造力以适应时代变化。
97 0
年终盘点AIGC:生成式AI一路生花,互联网开始步入大模型时代
|
7月前
|
人工智能 自然语言处理 测试技术
通义灵码入选 “2025 年值得关注的 AIGC 产品”,是唯一入选的 AI 编程产品
阿里云的通义灵码是一款基于通义大模型的AI编程助手,能够智能生成代码、优化结构、排查错误并自动生成测试用例,支持多种主流编程语言。在2025年入选《值得关注的AIGC产品》榜单,凭借卓越技术与广泛应用场景成为国内开发者首选。通义灵码已在国内多个行业落地,大幅提升开发效率与代码质量,同时针对中文编程场景优化,支持企业内网部署保障数据安全,推动AI编程技术在教育与科研领域的创新应用。
|
机器学习/深度学习 数据采集 自然语言处理
|
8月前
|
人工智能 智能设计 数据可视化
AIGC设计点亮巴黎奥运AI科技之旅
AIGC设计点亮巴黎奥运AI科技之旅
|
人工智能 Cloud Native API
Higress 重磅更新:AI 能力全面开源,云原生能力再升级
Higress 最新的 1.4 版本基于为通义千问,以及多家云上 AGI 厂商客户提供 AI 网关的积累沉淀,开源了大量 AI 原生的网关能力。同时也在 Ingress、可观测、流控等云原生能力上做了全方位升级。
21961 359
|
人工智能 物联网 开发者
魔搭上线AIGC专区,为开发者提供一站式AI创作开发平台
魔搭上线AIGC专区,首批上架157个风格化大模型,专业文生图全免费~
580 16
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
297 7
|
机器学习/深度学习 人工智能 自然语言处理
AIGC:人工客服耗钱耗力!AI客服才是版本答案!
AIGC:人工客服耗钱耗力!AI客服才是版本答案!

热门文章

最新文章

下一篇
开通oss服务