✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在机器学习领域,数据分类是一个重要的任务,它涉及将数据集划分成不同的类别。为了提高分类的准确性和效率,研究人员一直在寻找更好的分类算法。其中,核极限学习机(Kernel Extreme Learning Machine,简称KELM)是一种有效的分类方法。近年来,粒子群算法(Particle Swarm Optimization,简称PSO)被广泛应用于优化问题,其在求解复杂问题上具有很好的性能。
本篇博文将介绍如何使用粒子群算法优化核极限学习机(PSO-KELM)来实现数据分类。首先,我们将简要介绍KELM和PSO的基本概念,然后详细讨论PSO-KELM算法的实现步骤和优势。
KELM是一种单隐层前馈神经网络,其基本思想是将输入数据通过一个非线性映射函数映射到一个高维特征空间,然后在该特征空间中进行线性分类。与传统的支持向量机(Support Vector Machine,简称SVM)相比,KELM具有更快的训练速度和更好的泛化能力。KELM的核心是随机初始化输入层到隐层之间的权重和隐层到输出层之间的权重,然后通过最小二乘法求解这些权重。虽然KELM的性能已经得到了广泛验证,但是其分类准确率和泛化能力仍有提升的空间。
PSO是一种模拟鸟群觅食行为的优化算法,其基本思想是通过模拟鸟群中的个体之间的信息交流和合作来寻找最优解。PSO算法通过迭代更新每个粒子的位置和速度,直到找到最优解或达到预定的停止条件。PSO算法具有全局搜索能力和较快的收敛速度,因此被广泛应用于优化问题。
PSO-KELM算法将PSO算法与KELM算法相结合,通过优化KELM中的权重来提高数据分类的准确性和泛化能力。PSO-KELM算法的实现步骤如下:
- 初始化粒子群的位置和速度,以及KELM中的权重。
- 计算每个粒子的适应度值,即KELM的分类准确率。
- 更新每个粒子的速度和位置,根据当前的最优解和全局最优解。
- 根据新的位置更新KELM中的权重。
- 重复步骤2至4,直到达到预定的停止条件。
PSO-KELM算法的优势在于能够通过PSO算法优化KELM中的权重,从而提高数据分类的准确性和泛化能力。与传统的KELM算法相比,PSO-KELM算法具有更好的性能和鲁棒性。此外,PSO-KELM算法还具有较快的收敛速度和全局搜索能力,能够更快地找到最优解。
总结起来,本篇博文介绍了如何使用粒子群算法优化核极限学习机(PSO-KELM)来实现数据分类。PSO-KELM算法通过优化KELM中的权重来提高分类的准确性和泛化能力,并具有较快的收敛速度和全局搜索能力。未来,我们可以进一步研究和改进PSO-KELM算法,以应用于更复杂的分类问题,并探索其在其他领域的应用潜力。
📣 部分代码
%% 清空环境变量warning off % 关闭报警信息close all % 关闭开启的图窗clear % 清空变量clc % 清空命令行%% 导入数据res = xlsread('数据集.xlsx');%% 划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%% 数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test = ind2vec(T_test );
⛳️ 运行结果
编辑
编辑
🔗 参考文献
[1] 周晓彦,李大鹏,徐华南.一种基于混合特征选择和GWO-KELM模型的鸟声识别方法:202110347388[P][2023-10-02].
[2] 周晓彦,李大鹏,徐华南.一种基于混合特征选择和GWO-KELM模型的鸟声识别方法:CN202110347388.2[P].CN113066481A[2023-10-02].
[3] Roushangar K , Shahnazi S , Sadaghiani A A .An efficient hybrid grey wolf optimization-based KELM approach for prediction of the discharge coefficient of submerged radial gates[J].Soft Computing, 2022, 27(7):3623-3640.DOI:10.1007/s00500-022-07614-7.