SMA-LSSVM回归预测 | Matlab 黏菌优化最小二乘支持向量机回归预测

简介: SMA-LSSVM回归预测 | Matlab 黏菌优化最小二乘支持向量机回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习领域,数据回归预测是一个重要的任务,它可以帮助我们从已知数据中推断出未知数据的值。最小二乘支持向量机(Least Squares Support Vector Machine,简称LSSVM)是一种常用的回归预测模型,它通过最小化误差平方和来拟合数据。

然而,LSSVM模型在处理大规模数据集时可能会面临一些挑战。为了解决这个问题,我们可以引入黏菌算法(Slime Mould Algorithm,简称SMA)来优化LSSVM模型,以提高其性能和准确性。

黏菌算法是一种基于自然界中黏菌的行为机制而设计的优化算法。黏菌是一种单细胞生物,它具有自主移动和感知环境的能力。黏菌通过释放化学物质来吸引或排斥其他黏菌,并通过这种相互作用来寻找最佳路径或解决问题。

在基于黏菌算法优化的SMA-LSSVM中,我们首先使用LSSVM模型来拟合数据。然后,我们将黏菌算法引入到模型中,以优化模型参数。黏菌算法通过模拟黏菌的行为,通过释放化学物质来吸引或排斥其他模型参数,以寻找最佳的参数组合。

SMA-LSSVM模型的优化过程可以分为以下几个步骤:

  1. 初始化黏菌群体:根据LSSVM模型的参数空间,初始化一群黏菌。每个黏菌代表一个参数组合。
  2. 计算适应度函数:根据LSSVM模型的性能指标(如均方误差或决定系数),计算每个黏菌的适应度值。适应度值越高,表示该参数组合越优秀。
  3. 释放化学物质:根据适应度值,每个黏菌释放化学物质来吸引或排斥其他黏菌。适应度值高的黏菌释放的化学物质浓度较高,吸引其他黏菌靠近;适应度值低的黏菌释放的化学物质浓度较低,排斥其他黏菌。
  4. 移动和更新参数:黏菌根据化学物质的浓度移

📣 部分代码

function [model,Yt] = prelssvm(model,Xt,Yt)% Preprocessing of the LS-SVM%% These functions should only be called by trainlssvm or by% simlssvm. At first the preprocessing assigns a label to each in-% and output component (c for continuous, a for categorical or b% for binary variables). According to this label each dimension is rescaled:% %     * continuous: zero mean and unit variance%     * categorical: no preprocessing%     * binary: labels -1 and +1% % Full syntax (only using the object oriented interface):% % >> model   = prelssvm(model)% >> Xp = prelssvm(model, Xt)% >> [empty, Yp] = prelssvm(model, [], Yt)% >> [Xp, Yp] = prelssvm(model, Xt, Yt)% %       Outputs    %         model : Preprocessed object oriented representation of the LS-SVM model%         Xp    : Nt x d matrix with the preprocessed inputs of the test data%         Yp    : Nt x d matrix with the preprocessed outputs of the test data%       Inputs    %         model : Object oriented representation of the LS-SVM model%         Xt    : Nt x d matrix with the inputs of the test data to preprocess%         Yt    : Nt x d matrix with the outputs of the test data to preprocess% % % See also:%   postlssvm, trainlssvm% Copyright (c) 2011,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlabif model.preprocess(1)~='p', % no 'preprocessing  if nargin>=2, model = Xt;  end   returnend% % what to do% if model.preprocess(1)=='p',   eval('if model.prestatus(1)==''c'',model.prestatus=''unschemed'';end','model.prestatus=''unschemed'';');end  if nargin==1, % only model rescaling      %  % if UNSCHEMED, redefine a rescaling  %  if model.prestatus(1)=='u',% 'unschemed'    ffx =[];            for i=1:model.x_dim,      eval('ffx = [ffx model.pre_xscheme(i)];',...     'ffx = [ffx signal_type(model.xtrain(:,i),inf)];');    end    model.pre_xscheme = ffx;       ff = [];    for i=1:model.y_dim,      eval('ff = [ff model.pre_yscheme(i)];',...     'ff = [ff signal_type(model.ytrain(:,i),model.type)];');    end    model.pre_yscheme = ff;    model.prestatus='schemed';  end    %  % execute rescaling as defined if not yet CODED  %  if model.prestatus(1)=='s',% 'schemed'      model=premodel(model);     model.prestatus = 'ok';  end    %  % rescaling of the to simulate inputs  %elseif model.preprocess(1)=='p'  if model.prestatus(1)=='o',%'ok'     eval('Yt;','Yt=[];');    [model,Yt] = premodel(model,Xt,Yt);  else     warning('model rescaling inconsistent..redo ''model=prelssvm(model);''..');  endendfunction [type,ss] = signal_type(signal,type)%% determine the type of the signal,% binary classifier ('b'), categorical classifier ('a'), or continuous% signal ('c')%%ss = sort(signal);dif = sum(ss(2:end)~=ss(1:end-1))+1;% binaryif dif==2,  type = 'b';% categoricalelseif dif<sqrt(length(signal)) || type(1)== 'c',  type='a';% continuelse  type ='c';end  %% effective rescaling%function [model,Yt] = premodel(model,Xt,Yt)%%%if nargin==1,  for i=1:model.x_dim,    % CONTINUOUS VARIABLE:     if model.pre_xscheme(i)=='c',      model.pre_xmean(i)=mean(model.xtrain(:,i));      model.pre_xstd(i) = std(model.xtrain(:,i));      model.xtrain(:,i) = pre_zmuv(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));      % CATEGORICAL VARIBALE:     elseif model.pre_xscheme(i)=='a',      model.pre_xmean(i)= 0;      model.pre_xstd(i) = 0;      model.xtrain(:,i) = pre_cat(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));      % BINARY VARIBALE:     elseif model.pre_xscheme(i)=='b',            model.pre_xmean(i) = min(model.xtrain(:,i));      model.pre_xstd(i) = max(model.xtrain(:,i));      model.xtrain(:,i) = pre_bin(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));    end    end    for i=1:model.y_dim,    % CONTINUOUS VARIABLE:     if model.pre_yscheme(i)=='c',      model.pre_ymean(i)=mean(model.ytrain(:,i),1);      model.pre_ystd(i) = std(model.ytrain(:,i),1);      model.ytrain(:,i) = pre_zmuv(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));    % CATEGORICAL VARIBALE:     elseif model.pre_yscheme(i)=='a',            model.pre_ymean(i)=0;      model.pre_ystd(i) =0;      model.ytrain(:,i) = pre_cat(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));    % BINARY VARIBALE:     elseif model.pre_yscheme(i)=='b',            model.pre_ymean(i) = min(model.ytrain(:,i));      model.pre_ystd(i) = max(model.ytrain(:,i));      model.ytrain(:,i) = pre_bin(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));    end    endelse %if nargin>1, % testdata Xt,   if ~isempty(Xt),    if size(Xt,2)~=model.x_dim, warning('dimensions of Xt not compatible with dimensions of support vectors...');end    for i=1:model.x_dim,      % CONTINUOUS VARIABLE:       if model.pre_xscheme(i)=='c',  Xt(:,i) = pre_zmuv(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));      % CATEGORICAL VARIBALE:       elseif model.pre_xscheme(i)=='a',  Xt(:,i) = pre_cat(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));      % BINARY VARIBALE:       elseif model.pre_xscheme(i)=='b',        Xt(:,i) = pre_bin(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));      end      end  end    if nargin>2 & ~isempty(Yt),    if size(Yt,2)~=model.y_dim, warning('dimensions of Yt not compatible with dimensions of training output...');end    for i=1:model.y_dim,      % CONTINUOUS VARIABLE:       if model.pre_yscheme(i)=='c',  Yt(:,i) = pre_zmuv(Yt(:,i),model.pre_ymean(i), model.pre_ystd(i));      % CATEGORICAL VARIBALE:       elseif model.pre_yscheme(i)=='a',        Yt(:,i) = pre_cat(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));      % BINARY VARIBALE:       elseif model.pre_yscheme(i)=='b',        Yt(:,i) = pre_bin(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));      end    end  end    % assign output  model=Xt;endfunction X = pre_zmuv(X,mean,var)%% preprocessing a continuous signal; rescaling to zero mean and unit% variance % 'c'%X = (X-mean)./var;function X = pre_cat(X,mean,range)%% preprocessing a categorical signal;% 'a'%X=X;function X = pre_bin(X,min,max)%% preprocessing a binary signal;% 'b'%if ~sum(isnan(X)) >= 1 %--> OneVsOne encoding    n = (X==min);    p = not(n);    X=-1.*(n)+p;end

⛳️ 运行结果

🔗 参考文献

[1] 孙峰超.基于最小二乘支持向量机的非线性预测控制[D].中国石油大学[2023-09-28].DOI:10.7666/d.y1709445.

[2] 杨钊,路超凡,刘安黎.基于PSO-LSSVM算法的表面粗糙度预测模型与应用[J].机床与液压, 2021, 49(6):5.

[3] 刘云,易松.基于双参数最小二乘支持向量机(TPA-LSSVM)的风电时间序列预测模型的优化研究[J].北京化工大学学报:自然科学版, 2019, 46(2):6.DOI:CNKI:SUN:BJHY.0.2019-02-015.

[4] 殷樾.基于粒子群算法最小二乘支持向量机的日前光伏功率预测[J].分布式能源, 2021, 6(2):7.DOI:10.16513/j.2096-2185.DE.2106019.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合







相关文章
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
12天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
14天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)