使用Plotly库创建图形的使用案例

简介: 使用Plotly库创建图形的使用案例

以下是一个使用Plotly库创建图形的使用案例:

首先,导入必要的库:

python
import plotly.express as px
创建一个数据集,例如:

python
iris = px.data.iris()
创建一个图形,例如:

python
fig = px.density_contour(iris, x="sepal_width", y="sepal_length")
fig.show()
或者使用其它的图形,例如极坐标图:

python
fig = px.scatter(iris, x="sepal_width", y="sepal_length", theta="species")
fig.show()
上述示例中的“iris”是一个经典的数据集,可以从Plotly库中直接调用,而“px.density_contour”和“px.scatter”则是创建不同类型图形的函数。通过这些函数,我们可以将数据集中的数据映射到图形的不同属性上,例如“x”和“y”参数用于确定数据的横纵坐标,而“theta”参数则用于确定极坐标图的半径。最后使用“fig.show()”方法来展示图形。

相关文章
|
3月前
|
数据可视化 数据挖掘 定位技术
Python中利用Bokeh创建动态数据可视化
【10月更文挑战第14天】本文介绍了如何使用 Bokeh 库在 Python 中创建动态数据可视化。Bokeh 是一个强大的开源可视化工具,支持交互式图表和大规模数据集的可视化。文章从安装 Bokeh 开始,逐步讲解了如何创建动态折线图,并添加了交互式控件如按钮、滑块和下拉菜单,以实现数据更新频率的调节和颜色选择。通过这些示例,读者可以掌握 Bokeh 的基本用法,进一步探索其丰富功能,创建更具吸引力和实用性的动态数据可视化。
69 0
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python中的数据可视化:使用Matplotlib库绘制图表
【8月更文挑战第30天】数据可视化是数据科学和分析的关键组成部分,它帮助我们以直观的方式理解数据。在Python中,Matplotlib是一个广泛使用的绘图库,提供了丰富的功能来创建各种类型的图表。本文将介绍如何使用Matplotlib库进行数据可视化,包括安装、基本概念、绘制不同类型的图表以及自定义图表样式。我们将通过实际代码示例来演示如何应用这些知识,使读者能够轻松地在自己的项目中实现数据可视化。
|
6月前
|
存储 监控 数据可视化
【Bokeh 库】Python 中的动态数据可视化
【7月更文挑战第15天】Python的Bokeh库是用于动态数据可视化的利器,它能创建交互式、现代Web浏览器兼容的图表。安装Bokeh只需`pip install bokeh`。基础概念包括Plot、Glyph、数据源和工具。通过示例展示了如何用Bokeh创建动态折线图,包括添加HoverTool。Bokeh还支持散点图、柱状图,可自定义样式和布局,添加更多交互工具,并能构建交互式应用和实时数据流更新。适用于数据探索和实时监控。
83 5
|
6月前
|
数据可视化 Linux 数据格式
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
|
7月前
|
数据可视化 数据挖掘 API
Python数据可视化基础:使用Matplotlib绘制图表
Python的Matplotlib是数据可视化的首选库,它提供静态、动态和交互式图表。要开始,先通过`pip install matplotlib`安装。绘制基本折线图涉及导入`pyplot`,设定数据,然后用`plot()`函数画图,如: ```markdown import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 3, 5, 7, 11] plt.plot(x, y, 'o') plt.show() ``` 自定义图表包括更改线条样式、颜色等,例如: ```markdown
|
8月前
|
存储 数据可视化 算法
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
|
8月前
使用Plotly库创建图形的使用案例
【4月更文挑战第29天】导入plotly.express库,以iris数据集为例,展示如何创建图形。使用px.density_contour绘制密度轮廓图或px.scatter创建极坐标图,其中"x","y"定义坐标,"theta"定义极坐标的半径。最后通过fig.show显示图形。 ```
49 2
|
8月前
|
Python
使用Seaborn库创建图形的使用案例
【4月更文挑战第29天】该代码段首先导入seaborn和matplotlib库,然后加载名为"titanic"的数据集。接着,它创建一个画布并设定子图大小。通过seaborn的FacetGrid以"Attrition_Flag"为列进行分组,映射数据到网格上,用histplot展示"Customer_Age"的直方图分布。同样,也使用boxplot方法生成"Freq"的箱线图。最后展示所有图形。
37 2
|
8月前
|
Python
如何使用Python的Plotly库创建交互式图表?
Plotly是Python的交互式图表库,支持多种图表类型。安装Plotly后,导入graph_objects和express模块。准备数据,然后使用Figure()或px.line()创建图表对象。通过add_trace()添加数据,设置属性,并用show()或write_html()展示或保存图表。以下是一个创建交互式折线图的简单示例,展示了数据准备、对象创建、属性设置及显示过程。Plotly还支持高级功能如子图、多轴和动画,适用于复杂需求。
51 0
|
Python
Python使用Seaborn库创建图形的使用案例
使用Seaborn库创建图形的使用案例
100 1