带你读《2022技术人的百宝黑皮书》——移动域全链路可观测架构和关键技术(10)

简介: 带你读《2022技术人的百宝黑皮书》——移动域全链路可观测架构和关键技术(10)

带你读《2022技术人的百宝黑皮书》——移动域全链路可观测架构和关键技术(9)https://developer.aliyun.com/article/1340960?groupCode=taobaotech


请求精简提速-极简调用实践

以MTOP请求作为一个场景,链路主要涉及「MTOP到网络库」的交互,通过对全链路线程模型现状分析,从MTOP发起到网络层接收到会几点会导致请求慢:

 

image.png数据拷贝多:现有网络层机制,网络库存在hook拦截处理,基于NSURLConnection + "URL Loading System" 转发到网络库进行网络传输,涉及多次数据拷贝,中转拦截处理非常耗时。

image.png线程切换多:线程模型过于复杂,完成一次请求频繁切换线程。

image.png异步转同步:原有请求使用一个队列 NSOperationQueue  来处理任务,底层维护的这个队列把请求和响应绑在一起,使得发送之后要等待响应结果回来才会释放,"HTTP Operation" 占住完整的一个HTTP收发过程的全部IO,违背了网络请求的并行性,operation queue容易打满阻塞。

 

 

 

以上几点问题,在大批量请求、系统资源竞争激烈场景下下(冷启动,几十个请求一拥而上),更为明显。

 

image.png

 

(图21 线程模型优化前后-极简调用)

 

改造方案,通过MTOP直接调用网络库接口来获得较大性能体验提升

 

 

image.pngimage.png简化线程模型: 跳过系统URL Loading System hook机制,完成收发数据线程切换,减少线程切换。避免弱网阻塞:数据包Sending 与 Receiving 拆分处理,空口长RT不影响 I/O 并发容量;

image.png汰换废弃API:升级老旧NSURLConnection 到直接调用 网络库API。

 

 

数据效果:可以看到,在系统资源更为紧张环境下,如低端机上优化幅度更为明显。

image.png

(图22 极简调用AB优化幅度)

 

弱网策略优化-Android网络多通道实践

WIFI信号差、弱网环境下,有时候多次重试对成功率提升效果并不明显。系统提供了一种能力,允许设备在WIFI环境下将请求切换蜂窝网卡的能力。网络应用层可以利用该技术,减少请求的超时等一类错误,提升请求的成功率。

 

 

 

在Android 21之后,系统提供了新的获取网络对象的方式,即使设备当前具有通过以太网的数据连接,应用程序也可以使用此方法来获取连接的蜂窝网络。所以,当用户设备同时存在WIFI和蜂窝网络的情况下,可以在特定策略下将不同请求同时调度到以太网和蜂窝网两个网卡通道上,实现网络加速。

 

带你读《2022技术人的百宝黑皮书》——移动域全链路可观测架构和关键技术(11)https://developer.aliyun.com/article/1340958?groupCode=taobaotech

目录
打赏
0
0
0
0
52
分享
相关文章
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
626 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
66 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
591 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
3月前
|
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
274 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
185 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
55 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
84 18
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
127 7

热门文章

最新文章