m基于16QAM调制的音频信号同步接收器matlab仿真,包括gardner符号同步,载波同步以及CMA均衡

简介: m基于16QAM调制的音频信号同步接收器matlab仿真,包括gardner符号同步,载波同步以及CMA均衡

1.算法仿真效果
matlab2022a仿真结果如下:

锁定过程的星座图变化情况:
1.jpeg
2.jpeg
3.jpeg

定时收敛曲线:

5a6ed4c1c2b8c6a025fc09da1ffc9acb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

载波同步收敛曲线:

7aba8ded4c929df47c1b44baa1789603_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于16QAM(Quadrature Amplitude Modulation)调制的音频信号同步接收器是一个复杂但高效的通信系统。该系统主要涉及三个关键部分:Gardner符号同步、载波同步以及CMA(Constant Modulus Algorithm)均衡。

  1. Gardner符号同步

     Gardner符号同步是一个用于数字通信系统的相位和频率同步的算法,它是在数据符号级别上工作的。这个算法通过一个特殊的滤波器(Gardner或Dragone滤波器)来估计并跟踪接收信号的相位和频率。这个滤波器尝试最小化接收信号和理想信号之间的差异,从而提供一个准确的相位和频率估计。
    
      Gardner定时误差算法通常用在BPSK、QPSK信号,通过改进可以应用在QAM等多进制基带信号中。Gardner定时误差算法,该算法的一个特点是每个符号只需要使用两个采样点,一个是strobe点,即最佳观察点,另外一个是midstrobe点,即两个观察点之间的采样点。Gardener环中的数控振荡器与锁相环路中的NCO功能完全不同,这里的NCO作用是产生时钟,即确定内插基点mk,同时完成分数间隔uk的计算,以提供给内插器进行内插。
    

    位同步环路中的数控振荡器(NCO)是一个相位递减器,它的差分方程为:
    η(m+1)=[η(m)-ω(m)]mod1

    式中,η(m)是第m个工作时钟NCO寄存器的内容,ω(m)为NCO的控制字,两者都是正小数。NCO的工作周期是T s(采样周期),内插器的周期为T i,ω(m)由环路滤波器进行调节,使NCO在最佳采样时刻溢出。
    
  2. 载波同步

    载波同步是用于从接收到的信号中提取相位和频率信息的部分。它主要用于消除接收信号中可能存在的载波偏差。这种偏差可能由发射和接收设备的频率不同步或者多径效应引起。 Costas环(Costas Loop)用在抑制载波调制信号(比如双边带抑制载波调制)和相位调制信号(BPSK、QPSK)的相干解调中的载波恢复(carrier frequency recovery)上。Costas环的主要应用是在无线通信接收机中。与基于PLL的检波器相比,它的优势在于,在相位差比较小的情况下,Costas环输出的误差电压为 sin(2(θi−θf)) ,而基于PLL的检波器输出的误差电压为 sin(θi−θf) ,这不仅使灵敏度提高了一倍,而且使Costas环路特别适合跟踪载波的多普勒频移,特别是在OFDM和GPS接收机中。
    
  3. CMA均衡

     CMA(Constant Modulus Algorithm)均衡是一种常用于数字通信系统的盲信号处理技术。它主要用于消除多径干扰和通道失真。CMA均衡器通过调整其权重来最小化输出信号的模值偏差。这意味着它会尝试将接收到的信号调整到接近理想的信号形状。
    
     基于16QAM调制的音频信号同步接收器将上述三个部分结合在一起,通过处理接收到的信号实现同步解调和均衡处理,从而恢复出原始信号。
    

3.MATLAB核心程序

%gardner算法开始
len=length(out);
K=4;     %每 个符号采4个样点
Ns=len;  %总的采样点数
N=floor(Ns/K);%符号数
i=4;    %用来表示Ts的时间序号,指示n,n_temp,nco,
k=1;    %用来表示Ti时间序号,指示u,yI,yQ
ms=1;   %用来指示T的时间序号,用来指示a,b以及w
strobe=zeros(1,Ns);

c1=0.0267;   
c2=0.00035556;  %环路滤波器系数
%%%%% 仿真输入测试的PSK基带数据 %%%
aI=real(out);
aQ=imag(out);

ik=[];
qk=[];
ns=length(aI)-2;
length(aI);

tic;
while(i<ns)
    n_temp(i+1)=n(i)-w(ms);
    if(n_temp(i+1)>0)
        n(i+1)=n_temp(i+1);
    else
        n(i+1)=mod(n_temp(i+1),1);
        %内插滤波器模块
        FI1=0.5*aI(i+2-2)-0.5*aI(i+1-2)-0.5*aI(i-2)+0.5*aI(i-1-2);
        FI2=1.5*aI(i+1-2)-0.5*aI(i+2-2)-0.5*aI(i-2)-0.5*aI(i-1-2);
        FI3=aI(i-2);

.....................................................................
        end
        k=k+1;
        u(k)=n(i)/w(ms);
    end
    i=i+1;
end

toc;




figure;
t=0:length(u)-1;
T=1/2400;
subplot(311);
plot(t*T,u);
xlabel('运算点数');
ylabel('分数间隔');

t=0:length(time_error)-1;
T=1/2400;
subplot(312);
plot(t*T,time_error);
xlabel('运算点数');
ylabel('定时误差');
t=0:length(w)-1;
T=1/2400;
subplot(313);
t=0:length(ik)-1;
T=1/1200;
plot(t*T,ik);title('最终的基带数据I');

len=length(ik);
symbolall=ik-1i*qk;
sym=zeros(1,len);

ik=[0,ik];

basebandSignal=symbolall';

%%
%载波同步

tic;
T=1/FS;
Yo = [];
%给锁相环一个初始相位
Phase0 = pi/4;
for frame=1:nf 
    x        = basebandSignal(frame)*exp(sqrt(-1)*(phase*frame*T+Phase0));  %phase是反馈的调整变量,用来调整输入信号的载波频率来调整跟踪频率
    %将数据转换到基带
......................................................................
    Yo(frame)= dfrq;
end
%均衡器
OUT4 = CMA(OUT3);
OUT4 = OUT4;
toc;
LENS = 1000;%simulink设置的是1000.这里也1000.
axis([-0.5,0.5,-0.5,0.5]);
 subplot(133);
plot(real(OUT4(LENS*(i-1)+1:LENS*i)),imag(OUT4(LENS*(i-1)+1:LENS*i)),'r.');title('CMA均衡基带数据星座图');
axis([-0.5,0.5,-0.5,0.5]);
pause(0.1);
end
y=OUT4; 
T=1/2400;
Tx_real=y;

Tx_real=Tx_real';
t=t(1:length(Tx_real))*T;
data=[t' Tx_real];
ts2= timeseries;
ts2.Time=t';
ts2.Data=Tx_real;
save('data2.mat','-v7.3','ts2');
相关文章
|
2月前
|
Windows
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
本文通过MATLAB仿真实现了OFDM系统中BPSK、QPSK、4QAM、16QAM和32QAM调制解调过程,并在加性高斯白噪声信道及TDL瑞利衰落信道下计算了不同信噪比条件下的误比特率。
64 4
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
|
16天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
2月前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
60 2
|
2月前
|
数据可视化 数据挖掘
MATLAB - 信号分析器(signalanalyzer-app)
MATLAB - 信号分析器(signalanalyzer-app)
133 1
|
2月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
41 0
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
123 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
95 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
71 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章

下一篇
无影云桌面