单播和多播的反应路由协议需求距离向量(AODV)matlab实现

简介: 单播和多播的反应路由协议需求距离向量(AODV)matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

最初的反应协议并不是为在发现路线时具有高度移动性的特点而设计的。由于动态的修改,这一变化往往是由于故障导致过度广播和淹没整个网络,以便发现新的路线。另外,路由的初始需要一些时间,这种延迟可以很容易地改变一切。由于这些原因,典型的反应性协议以其目前的格式,不完全适合于合作避免碰撞等关键时间应用。合作避免碰撞是车上安全应用的一个重要类别,其目的是向使用车辆对车辆(V2V)通信的司机提供早期的警告。需求距离向量(AODV)是一种能够同时进行单播和多播的反应路由协议。在AODV中,像所有的活性协议书一样,拓扑信息只能根据需要通过节点传输。当源哈苏梅要发送时,它会首先传播由中间节点转发的RREQ消息,直到到达目的地。如果接收器是使用所请求地址的节点,或者是访问所请求地址的有效路由,则路由回复消息将被连回源。如果接收器是使用所请求地址的节点,或者是访问所请求地址的有效路由,则路由回复消息将被连回源。如果接收器是使用所请求地址的节点,或者是访问所请求地址的有效路由,则路由回复消息将被连回源。

📣 部分代码

function [E,pcktlossrate,total_dist,pcktloss,thrgput]=evaluation(nodtble,node_rsu) % take out the distance of nodes in routing table from each otherfor ii=1:numel(nodtble)-1    distnc(ii)=sqrt((node_rsu(nodtble(ii+1),3)-node_rsu(nodtble(ii),3))^2+(node_rsu(nodtble(ii+1),4)-node_rsu(nodtble(ii),4))^2);endtotal_dist=sum(distnc); % total distnace from source to destinationtime_consumed=total_dist/(3*10e9);%% Perfromance Evolutionpktsize=64;%in bytesdatarate=[4,6,8,10,12,14]; % packets/secEtx=1;% in joulesEini=Etx;Elec=50e-9; %amount of Energy consumption per bit in the transmitter or receiver circuitryEmp=0.0015e-12;%Amount of energy consumption for multipath fadingEDA=5e-9; %Data aggregation energy.% paraemetrs for energy calculation using raio model of message% transmissionalpha1=50e-9; %J/bitalpha2=0.1e-9; %J/bit/m2alpha=2;Ebit=0.3e-3; % energy assigned to each bit %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%radio Model for energy consumption is % E=alpha1+alpha2*(dist)^alpha%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%hop=numel(nodtble);for ff=1:length(datarate)            E(ff)=(alpha1*datarate(ff)*pktsize*8)+(alpha2*datarate(ff)*pktsize*8)*(total_dist)^alpha;% energy loss calculation in transmitting packets at datarate            Edata(ff)=Ebit*datarate(ff)*pktsize*8;            for ll=1:datarate(ff)                Etx=Etx-(Elec*8*pktsize+Emp*8*pktsize);                Erx=Eini-Etx;                Erx=Erx-(Elec+EDA)*8*pktsize;                Eini=Etx;                if Etx<0.98                    pcktloss(ll)=1;                else                    pcktloss(ll)=0;                end                        end            if hop>4 && datarate(ff)> 6                pcktlossrate(1,ff)=(datarate(ff)-7)/datarate(ff);            else                pcktlossrate(1,ff)=0;            end            thrgput(1,ff)= (datarate(ff)*pktsize)/time_consumed;           end

⛳️ 运行结果


🔗 参考文献


🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
|
3月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
177 73
|
2月前
|
Serverless
MATLAB中的矩阵与向量运算
【10月更文挑战第2天】本文全面介绍了MATLAB中的矩阵与向量运算,包括基本操作、加减乘除、转置、逆矩阵、行列式及各种矩阵分解方法。通过丰富的代码示例,展示了如何利用矩阵运算解决线性方程组、最小二乘法拟合、动态系统模拟和电路分析等问题。掌握这些运算不仅提升编程效率,还能在工程计算和科学研究中发挥重要作用。
102 1
|
4月前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
5月前
|
算法
基于COPE协议的网络RLNCBR算法matlab性能仿真
摘要: 本研究聚焦于COPE协议与RLNCBR算法(MATLAB仿真),整合随机线性网络编码与背压路由,优化网络编码技术以增强吞吐量与鲁棒性。实验在MATLAB2022a下执行,展示了平均传输次数随接收节点数(N:2-10)变化趋势(P1=...=Pn=0.08,重传间隔100Δt)。COPE协议利用编码机会提高效率,而RLNCBR算法动态调整路径,减少拥塞,提升成功率。数学模型与仿真实验证实算法有效提升网络性能,降低时延与丢包率。[总计239字符]
|
5月前
|
前端开发 API Swift
什么是MATLAB许可证协议书
React Native和Swift在多个方面存在显著的区别,这些区别主要体现在它们的技术基础、应用场景、性能特点、开发效率以及社区支持等方面。
36 2
|
5月前
|
算法 物联网
机会路由MORE协议的matlab性能仿真
摘要: 本研究关注无线Mesh网络中的机会路由与网络编码融合技术,特别是MORE协议。机会路由利用无线特性提高网络效率,而网络编码提升网络吞吐量。在分析这两项技术的基础上,提出改进MORE的方案,优化节点选择和路径测量,以增强网络性能。使用MATLAB2022a进行仿真验证。尽管MORE独立于MAC层并应用线性网络编码,但其ETX测量可能存在不准确问题,该问题成为改进的重点。
|
6月前
|
缓存 算法
基于机会网络编码(COPE)的卫星网络路由算法matlab仿真
**摘要:** 该程序实现了一个基于机会网络编码(COPE)的卫星网络路由算法,旨在提升无线网络的传输效率和吞吐量。在MATLAB2022a中测试,结果显示了不同数据流个数下的网络吞吐量。算法通过Dijkstra函数寻找路径,计算编码机会(Nab和Nx),并根据编码机会减少传输次数。当有编码机会时,中间节点执行编码和解码操作,优化传输路径。结果以图表形式展示,显示数据流与吞吐量的关系,并保存为`R0.mat`。COPE算法预测和利用编码机会,适应卫星网络的动态特性,提高数据传输的可靠性和效率。
|
5月前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
5月前
|
传感器 算法
基于LEACH路由协议的网络性能matlab仿真,包括数据量,能耗,存活节点
- **LEACH协议**在WSN中通过分簇减少能耗,普通节点向最近簇头发送数据,簇头融合后发送给基站。本项目研究LEACH在不同初始能量、数据包及控制包长度条件下的网络性能,如剩余节点、能量、接收数据量和累计接收量。
|
6月前
|
传感器 存储 算法
无线传感网路由VBF协议和DBR协议的MATLAB性能仿真
**摘要** 本文档介绍了在MATLAB2022a中对无线传感器网络的VBF和DBR路由协议的性能仿真,关注能量消耗和节点存活。VBF协议依赖于节点的地理位置,采用源路由,通过矢量和管道路由选择转发节点。DBR协议则运用贪婪算法,基于节点深度决定转发,以接近水面为目标。两协议均考虑能量效率,但可能导致不必要的数据传输和重复分组,需优化策略以适应密集网络和避免冲突。