Python3,一次掌握这些数据可视化图表技能,老板不给涨薪都不好意思。

简介: Python3,一次掌握这些数据可视化图表技能,老板不给涨薪都不好意思。

1、引言

小屌丝:鱼哥, 老板让我把数据整理成视图。

小鱼:那你就整啊。

小屌丝:我整的不好看。

小鱼:看 内(shen)容(cai)的时候,要什么颜值。

小屌丝:那不行,老板说了,如果我这次把图表整好看了,给我涨薪2K。

小鱼:我去~ 你老板这是考验你啊。

小屌丝:所以…鱼哥 … 嘿嘿…

小鱼:你别嘿嘿了, 你有啥就直说吧。

小屌丝:这次,能不能涨薪,就靠你了。

小鱼:跟我有什么关系, 涨薪也不分给我。

小屌丝:鱼哥,老地方… 听说… 新加项目了…

小鱼:额… 我加班,可没时间去…

小屌丝:确定哈, 票我可有哦

小鱼:… 好吧,那我就帮你一次,就这一次哦。

2、代码示例

2.1 等高线密度图

2.1.1 安装

pip install plotly

然后就是等待着安装。

其它安装方式,直接看这两篇:

  • 如果在pycharm 安装失败plotly,需要先安装 Pandas。

2.1.2 示例

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2023-03-30
# @Author : Carl_DJ
'''
实现功能:
    等高线密度图
'''
import plotly.express as pt
fig = pt.density_contour(demofile, x="sepal_width", y="sepal_length")
fig.update_traces(contours_coloring="fill", contours_showlabels = True)
fig.show()

运行结果

2.2 旭日图

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2023-03-30
# @Author : Carl_DJ
'''
实现功能:
    旭日图表
'''
 import plotly.express as pt
 demofile = pt.data.tips()

2.3 分簇散点图

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2023-03-30
# @Author : Carl_DJ
'''
实现功能:
    分簇散点图
'''
import seaborn as sns
#data是数据源文件
sns.swarmplot(data=demofile, x="species", y="sepal_width")

2.4 点图

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2023-03-30
# @Author : Carl_DJ
'''
实现功能:
    点图
'''
 import seaborn as sns
 sns.pointplot(data=demofile,x="species", y="sepal_width")

2.5 小提琴图

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2023-03-30
# @Author : Carl_DJ
'''
实现功能:
    小提琴图
'''
import seaborn as sns
 sns.violinplot(data=demofile, y="sepal_width")

运行结果

2.6 词云

关于词云,我想不用过多介绍, 小鱼也有专篇介绍。

# -*- coding:utf-8 -*-
# @Time   : 2023-03-30
# @Author : Carl_DJ
'''
实现功能:
    词云生成器
'''
import json
import stylecloud
import codecs
import jieba
from collections import Counter
#过滤掉高频出现的词汇
passwords = set()
#读取词汇文档
content = [line.strip() for line in open('./data/passwords.txt', 'r',encoding='utf8').readlines()]
passwords.update(content)
#获取文档词汇, 并截取长度为3个
def make_words(txt):
    make_list = jieba.cut(txt)
    c = Counter()
    words_list = []
  #获取词汇文本
    for x in make_list:
      #长度为3,超过截取
        if len(x) ==  3 and x !='\r\n':
            c[x]  += 1
            words_list.append(x)
    for k,v in c.most_common(50):
        if k not in passwords:
            # print(f'{k,v}')
    #组合词云内容
    return " ".join(words_list)
#读取中大型suv测评.txt内容
with codecs.open('./data/中大型suv测评.txt','r','utf8') as f: #格式需要utf8 否则会报错
    txt = f.read()
#
words_txt = make_words(txt)
#设置词云展示的样式,字体,生成文件名称等,
stylecloud.gen_stylecloud(text=words_txt,custom_stopwords=content,
                          background_color='#1A1A1A',
                          colors=['#dd4444', '#fec42c', '#fac858'],
                          max_font_size=100,
                          output_name='xt6测评.jpg',
                          font_path="C:/Windows/Fonts/FZSTK.TTF"
                          )

3、总结

看到这里, 今天的分享差不多就该结束了。

在当前数据分析为主的时代, 学会一两种可视化图表,只有好处没有坏处。

并且,在年终总结或者季度总结中,也都会用到数据可视化分析图表。

所以, 你要不要掌握几种呢?

我是小鱼

  • CSDN 博客专家;
  • 阿里云 专家博主;
  • 51CTO 博客专家;
  • 51认证讲师;
  • 金牌面试官;
  • 职业规划师;

关注我,带你学习更多更有趣的Python知识。

目录
相关文章
|
2月前
|
SQL 存储 数据挖掘
使用Python和PDFPlumber进行简历筛选:以SQL技能为例
本文介绍了一种使用Python和`pdfplumber`库自动筛选简历的方法,特别是针对包含“SQL”技能的简历。通过环境准备、代码解析等步骤,实现从指定文件夹中筛选出含有“SQL”关键词的简历,并将其移动到新的文件夹中,提高招聘效率。
73 8
使用Python和PDFPlumber进行简历筛选:以SQL技能为例
|
2月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
126 3
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
81 9
|
3月前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
3月前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
220 19
|
3月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
3月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
116 5
|
4月前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
61 7

热门文章

最新文章

推荐镜像

更多