SpringCloud Alibaba系列(三) Sentinel熔断降级

简介:   除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方 API 等。例如,支付的时候,可能需要远程调用银联提供的 API;查询某个商品的价格,可能需要进行数据库查询。然而,这个被依赖服务的稳定性是不能保证的。如果依赖的服务出现了不稳定的情况,请求的响应时间变长,那么调用服务的方法的响应时间也会变长,线程会产生堆积,最终可能耗尽业务自身的线程池,服务本身也变得不可用。

一.介绍


  除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方 API 等。例如,支付的时候,可能需要远程调用银联提供的 API;查询某个商品的价格,可能需要进行数据库查询。然而,这个被依赖服务的稳定性是不能保证的。如果依赖的服务出现了不稳定的情况,请求的响应时间变长,那么调用服务的方法的响应时间也会变长,线程会产生堆积,最终可能耗尽业务自身的线程池,服务本身也变得不可用。


  现代微服务架构都是分布式的,由非常多的服务组成。不同服务之间相互调用,组成复杂的调用链路。以上的问题在链路调用中会产生放大的效果。复杂链路上的某一环不稳定,就可能会层层级联,最终导致整个链路都不可用。因此我们需要对不稳定的弱依赖服务调用进行熔断降级,暂时切断不稳定调用,避免局部不稳定因素导致整体的雪崩。熔断降级作为保护自身的手段,通常在客户端(调用端)进行配置。



二.熔断策略


  1.慢调用比例 (SLOW_REQUEST_RATIO):选择以慢调用比例作为阈值,需要设置允许的慢调用 RT(即最大的响应时间),请求的响应时间大于该值则统计为慢调用。当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且慢调用的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求响应时间小于设置的慢调用 RT 则结束熔断,若大于设置的慢调用 RT 则会再次被熔断。


  2.异常比例 (ERROR_RATIO):当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且异常的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。异常比率的阈值范围是 [0.0, 1.0],代表 0% - 100%。


  3.异常数 (ERROR_COUNT):当单位统计时长内的异常数目超过阈值之后会自动进行熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。


   异常降级仅针对业务异常,对 Sentinel 限流降级本身的异常(BlockException)不生效。


三.开始


  慢调用比例(RT)


  原理图



  测试:


   代码:每个请求进来需要暂停一秒钟(模拟处理业务需要一秒钟)



  配置降级


   dashboard:选择秒级平均响应时间RT,RT这里测试为200ms,也就是说必须在0.2秒之内处理完请求,时间窗口为1,代表在接下来的一秒内,打开断路器,触发熔断。



   模拟并发访问


   Jemeter多线程访问接口:没1秒钟10个线程并发请求接口。



  测试结果:


  因为downgrade接口处理业务需要1秒钟,一秒过后才返回,但是降级哪里配置了0.2秒内必须处理完,否则出发降级,这显示是不可能的,所以出发了降级。


  异常比例


    原理图

 


  代码int a = 10/0这段代码是会报错的,所以这段程序会抛出异常。



  配置降级:异常比例为0.2(20%),意思是允许程序出现20%的异常,时间窗口为1,代表在接下来的1秒内降级


   注:以上成立的条件是资源每秒的请求量 >= 5 , 如果资源每秒的请求量小于5,则程序不会降级,而是直接报错



  测试


   1.资源每秒请求量 >= 5


  Jemeter每秒循环向接口并发访问10次(大于等于5)




  2.资源每秒请求量 < 5


  程序异常报错



  异常数


    当单位统计时长内的异常数目超过阈值之后会自动进行熔断。


  原理图



  代码



  配置降级:


   如下表示60秒内如果发生5次异常,则触发降级



  测试结果:一分钟内发生五次异常则触发降级

目录
相关文章
|
4月前
|
Java UED Sentinel
微服务守护神:Spring Cloud Sentinel,让你的系统在流量洪峰中稳如磐石!
【8月更文挑战第29天】Spring Cloud Sentinel结合了阿里巴巴Sentinel的流控、降级、熔断和热点规则等特性,为微服务架构下的应用提供了一套完整的流量控制解决方案。它能够有效应对突发流量,保护服务稳定性,避免雪崩效应,确保系统在高并发下健康运行。通过简单的配置和注解即可实现高效流量控制,适用于高并发场景、依赖服务不稳定及资源保护等多种情况,显著提升系统健壮性和用户体验。
97 1
|
6月前
|
监控 Java Sentinel
使用Sentinel进行服务调用的熔断和限流管理(SpringCloud2023实战)
Sentinel是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。
166 3
|
6月前
springCloud之服务降级熔断Hystrix、OpenFeign
springCloud之服务降级熔断Hystrix、OpenFeign
366 0
|
3月前
|
监控 Java API
谷粒商城笔记+踩坑(25)——整合Sentinel实现流控和熔断降级
先简单介绍熔断、降级等核心概念,然后阐述SpringBoot整合Sentinel的实现方式,最后介绍Sentinel在本项目中的应用。
谷粒商城笔记+踩坑(25)——整合Sentinel实现流控和熔断降级
|
5月前
|
监控 Java 开发者
Spring Cloud中的服务熔断与降级
Spring Cloud中的服务熔断与降级
|
5月前
|
监控 Dubbo 应用服务中间件
通用快照方案问题之Sentinel与SpringCloud和Dubbo的整合如何解决
通用快照方案问题之Sentinel与SpringCloud和Dubbo的整合如何解决
52 0
|
6月前
|
监控 Java API
深入解析 Spring Cloud Sentinel:分布式系统流量控制与熔断降级的全面指南
深入解析 Spring Cloud Sentinel:分布式系统流量控制与熔断降级的全面指南
144 0
深入解析 Spring Cloud Sentinel:分布式系统流量控制与熔断降级的全面指南
|
6月前
|
自然语言处理 监控 开发者
springCloud之Sentinel流量路由、流量控制、流量整形、熔断降级
springCloud之Sentinel流量路由、流量控制、流量整形、熔断降级
142 0
|
2月前
|
负载均衡 算法 Java
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
40岁老架构师尼恩分享了关于SpringCloud核心组件的底层原理,特别是针对蚂蚁集团面试中常见的面试题进行了详细解析。内容涵盖了Nacos注册中心的AP/CP模式、Distro和Raft分布式协议、Sentinel的高可用组件、负载均衡组件的实现原理等。尼恩强调了系统化学习的重要性,推荐了《尼恩Java面试宝典PDF》等资料,帮助读者更好地准备面试,提高技术实力,最终实现“offer自由”。更多技术资料和指导,可关注公众号【技术自由圈】获取。
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
|
3月前
|
监控 Java Nacos
SpringCloud基础5——微服务保护、Sentinel
sentinel、雪崩问题、流量控制、隔离和降级、授权规则、规则持久化
SpringCloud基础5——微服务保护、Sentinel