AO-LSTM回归预测 | Matlab天鹰优化长短时记忆网络回归预测

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: AO-LSTM回归预测 | Matlab天鹰优化长短时记忆网络回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在如今的科技时代,风能作为可再生能源的一种,正逐渐成为世界各地能源供应的重要组成部分。随着风电场的不断发展和扩大,对风电发电量的准确预测变得尤为重要。准确的风电预测可以帮助电力公司优化能源调度,提高能源利用效率,并减少对传统能源的依赖。

长短时记忆(LSTM)是一种特殊的循环神经网络(RNN),在时间序列数据预测中表现出色。然而,传统的LSTM模型在处理长期依赖性时存在一定的局限性。为了解决这个问题,研究人员提出了AO-LSTM(Attention-based Optimization LSTM)模型。AO-LSTM模型通过引入注意力机制,能够更好地捕捉时间序列数据中的长期依赖关系,从而提高预测精度。

然而,即使使用AO-LSTM模型,风电数据预测的准确性仍然存在一定的挑战。为了进一步提升预测精度,我们引入了天鹰算法来优化AO-LSTM模型。天鹰算法是一种基于仿生学原理的优化算法,通过模拟鹰群的觅食行为来寻找最优解。这种算法具有全局搜索能力和较强的收敛性,可以有效地优化复杂的非线性问题。

在本研究中,我们使用了一份真实的风电数据集进行实验。首先,我们使用传统的LSTM模型对风电数据进行预测,并评估其预测精度。然后,我们使用AO-LSTM模型进行预测,并与传统LSTM模型进行对比。最后,我们引入天鹰算法对AO-LSTM模型进行优化,并再次评估其预测精度。

实验结果表明,相比于传统的LSTM模型,AO-LSTM模型在风电数据预测中表现出更好的性能。AO-LSTM模型能够更准确地捕捉时间序列数据中的长期依赖关系,从而提高预测精度。而通过引入天鹰算法优化AO-LSTM模型,我们进一步提升了预测精度,取得了更好的结果。

综上所述,基于天鹰算法优化的长短时记忆AO-LSTM模型在风电数据预测中具有很大的潜力。这种模型能够更准确地预测风电发电量,为电力公司的能源调度提供重要参考。未来的研究可以进一步探索其他优化算法在AO-LSTM模型中的应用,以进一步提升预测精度,并推动风能产业的发展。

📣 部分代码

% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

⛳️ 运行结果

🔗 参考文献

[1]  Wang X .Compound Fault Diagnosis of Rolling Bearing Based on ACMD, Gini Index Fusion and AO-LSTM[J].Symmetry, 2021, 13.DOI:10.3390/sym13122386.

[2] 陈旭东,周觅,陈元橼.一种基于PEARSON-LSTM多步长融合网络的AQI指数预测方法:CN202111235557.X[P].CN202111235557.X[2023-09-27].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
19 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
17天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
51 7
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
21天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
45 8
|
26天前
|
存储 网络协议 定位技术
OSPF路由汇总:优化网络的强大工具
OSPF路由汇总:优化网络的强大工具
56 1
|
5天前
|
Go 数据安全/隐私保护 UED
优化Go语言中的网络连接:设置代理超时参数
优化Go语言中的网络连接:设置代理超时参数
|
26天前
|
负载均衡 网络协议 算法
OSPF 中的负载均衡:优化网络流量分布
OSPF 中的负载均衡:优化网络流量分布
50 0
|
4月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
4月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
187 2