✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着科技的不断发展和应用需求的增加,对于能源预测的准确性和可靠性提出了更高的要求。在能源领域中,功率和风速的预测是非常重要的,因为它们直接影响到风力发电和能源供给的稳定性。因此,如何提高功率和风速预测的准确性成为了研究的热点。
近年来,深度学习方法在功率和风速预测领域取得了显著的成果。其中,长短记忆神经网络(LSTM)被广泛应用于时间序列预测任务中,其能够捕捉到时间序列中的长期依赖关系。然而,传统的LSTM模型在处理非线性、非平稳和非高斯的时间序列数据时存在一定的局限性。
为了克服传统LSTM模型的局限性,研究者们提出了一种改进的海洋捕食算法(Improved Marine Predation Algorithm,iMPA)来优化LSTM模型。iMPA算法是一种基于自然界中生物捕食行为的优化算法,通过模拟生物捕食行为来寻找最优解。通过将iMPA算法与LSTM模型相结合,可以提高LSTM模型的预测性能。
然而,传统的LSTM模型只能处理单向的时间序列数据,而在实际应用中,往往需要考虑到过去和未来的信息。为了解决这个问题,双向长短记忆神经网络(BiLSTM)被提出。BiLSTM模型通过同时考虑前向和后向的信息来进行预测,从而更好地捕捉时间序列中的关联性。
为了进一步提高功率和风速预测的准确性,本文提出了一种基于ICEEMDAN结合改进海洋捕食算法优化双向长短记忆神经网络的方法。首先,利用改进的海洋捕食算法(iMPA)来优化BiLSTM模型的参数。然后,引入了ICEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)方法,对输入数据进行预处理,以提取出数据中的主要特征。最后,将预处理后的数据输入到优化后的BiLSTM模型中进行预测。
实验结果表明,基于ICEEMDAN结合改进海洋捕食算法优化的双向长短记忆神经网络在功率和风速预测任务中取得了较好的性能。与传统的LSTM模型相比,优化后的模型在预测准确性和稳定性上都有所提升。这表明了本文提出的方法在提高功率和风速预测准确性方面具有潜力。
总之,本文提出了一种基于ICEEMDAN结合改进海洋捕食算法优化双向长短记忆神经网络的方法,用于功率和风速预测任务。实验结果表明,该方法能够有效提高预测的准确性和稳定性。未来的研究可以进一步探索其他优化算法和深度学习模型的结合,以进一步提高能源预测的性能。
📣 部分代码
function [ fitness ] = fitnessFunction(tour,ACOtotalpathloss,ACOtotalenergy,ACOtotalpheromone)% function [ fitness ] = fitnessFunction(ACOedgesenergymatrix,ACOdesirebilitymatrix,tour)fitness = 0;for i = 1 : length(tour) ACOcurrentroute = tour(i); %ACOnextnode = tour(i+1); % fitness = fitness + ACOedgesenergymatrix(1, ACOcurrentNode); fitness = fitness + ACOtotalpheromone(ACOcurrentroute, 1);% + (1/ACOtotalenergy(ACOcurrentroute, 1)); % + ACOtotalpathloss(ACOcurrentroute, 1);% fitness = fitness + ACOdesirebilitymatrix(ACOnextnode, 1); %fitness = fitness + Gaco.Edges(ACOcurrentNode, ACOnextnode); end
% Import necessary toolboxesimport phased.*import comm.*% Constant DefinitionsnNodes = 10; % Number of wireless sensor nodescenterFrequency = 5e9; % Operating frequency (5 GHz - suitable for sub-6 GHz 5G)binaryDataSize = 1024; % Size of binary data to be transmitted by each node% Network and Antenna Setupnodes = cell(1,nNodes); % Create a wireless sensor network with antennasfor k = 1:nNodes % Create an isotropic antenna element for each node, with a specified frequency range of 2 GHz to 8 GHz nodes{k} = phased.IsotropicAntennaElement('FrequencyRange', [2e9 8e9]);end% Spatial Setup% Random 3D positions for the nodes; Z-coordinates are all 0nodePos = [100*rand(2,nNodes); zeros(1,nNodes)];% Base station is located at the origin in 3DbasePos = [0;0;0];% Define the propagation model with the same operating frequency% Assumes two-way propagation (to and from the base station)propModel = phased.FreeSpace('OperatingFrequency', centerFrequency, 'TwoWayPropagation', true);% Plot Node Positions and Antenna Directionsfigure;hold on;plot(basePos(1), basePos(2), 'ro', 'DisplayName', 'Base Station');for k = 1:nNodes plot(nodePos(1,k), nodePos(2,k), 'bo', 'DisplayName', sprintf('Node %d', k)); quiver(nodePos(1,k), nodePos(2,k), basePos(1)-nodePos(1,k), basePos(2)-nodePos(2,k), 0.1, 'b');endxlabel('X Coordinate');ylabel('Y Coordinate');title('Node Positions and Antenna Directions');legend('Location','best');hold off;% Preallocate bit errorsbitErrors = zeros(1,nNodes);% Data Transmission and Reception% Iterate over each node, transmit data, and receive it at the base stationfor k = 1:nNodes % Generate random binary data at each node data = randi([0 1], binaryDataSize, 1); % Apply BPSK modulation to the data modData = pskmod(data, 2); % Define the carrier signal and modulate the data onto the carrier signal t = (0:length(modData)-1)'; carrier = cos(2*pi*centerFrequency*t); txSig = modData .* carrier; % Compute the angle to the base station from the node pos_diff = basePos - nodePos(:,k); azimuth = atan2d(pos_diff(2), pos_diff(1)); % Propagate the signal through the medium sig = propModel(txSig, nodePos(:,k), basePos, [azimuth;0;0], [0;0;0]); % Amplify the received signal (simple gain model for the receiving antenna) receivedSig = sig; % Demodulate the received signal to recover the original data recvData = pskdemod(receivedSig, 2); % Compare the transmitted and received data to check for transmission errors nErrors = biterr(data, recvData); % Output the number of errors for each node fprintf('Node %d: %d errors\n', k, nErrors); % Store bit errors for each node bitErrors(k) = nErrors;end% Plot the bit errors for each nodefigure;bar(1:nNodes, bitErrors);xlabel('Node');ylabel('Bit Errors');title('Bit Errors for Each Node');
⛳️ 运行结果
🔗 参考文献
[1] 赵雨洁,颜上取,贺京琳,等.基于ICEEMDAN结合MMSVC和WT的HIFU回波信号联合去噪算法[J].测试科学与仪器:英文版, 2023, 14(1):35-44.
[2] 杨洋,郭兴明,郑伊能,等.基于ICEEMDAN-MSE的左室舒张功能障碍心音信号的识别研究[J].仪器仪表学报, 2022(001):043.