matlab改进鲸鱼算法GSWOA 基准函数对比与检验

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: matlab改进鲸鱼算法GSWOA 基准函数对比与检验

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

近年来,优化算法在解决各种单目标优化问题中发挥着重要作用。其中,鲸鱼优化算法 (GWO) 是一种受到自然界鲸鱼群体行为启发的优化算法,已经在多个领域取得了显著的成果。然而,传统的GWO算法在处理复杂问题时存在一些局限性。为了克服这些限制,研究者们提出了一种基于自适应变螺旋最近领域扰动的鲸鱼优化算法 (GWOA)。

GWOA算法的核心思想是通过引入自适应变螺旋最近领域扰动机制,增加搜索空间的多样性和局部搜索能力。该算法的基本步骤如下:

  1. 初始化种群:随机生成一定数量的鲸鱼个体,并为每个个体分配初始位置和速度。
  2. 计算适应度值:根据问题的目标函数,计算每个个体的适应度值。
  3. 更新最优解:根据适应度值,更新全局最优解和个体最优解。
  4. 更新位置和速度:根据自适应变螺旋最近领域扰动机制,更新每个个体的位置和速度。
  5. 判断停止条件:根据预设的停止条件,判断是否终止算法。
  6. 返回最优解:输出找到的最优解。

GWOA算法的关键创新点在于自适应变螺旋最近领域扰动机制。这一机制通过引入随机扰动和自适应变螺旋搜索策略,提高了算法的全局搜索能力和局部搜索能力。在每次迭代中,个体根据自身适应度值和邻域信息进行位置和速度的更新,从而使得算法能够更好地探索问题的搜索空间。

与传统的GWO算法相比,GWOA算法在求解单目标优化问题时具有更高的收敛速度和更好的解的质量。其自适应变螺旋最近领域扰动机制能够有效地避免算法陷入局部最优解,并且具有较好的全局搜索能力。因此,GWOA算法在实际应用中具有广泛的潜力。

总之,基于自适应变螺旋最近领域扰动的鲸鱼优化算法 (GWOA) 是一种有效的求解单目标优化问题的优化算法。通过引入自适应变螺旋最近领域扰动机制,该算法能够提高搜索空间的多样性和局部搜索能力,从而在复杂问题中取得更好的解。未来,我们可以进一步研究和改进GWOA算法,以应用于更多实际问题的求解中。

📣 部分代码

%_________________________________________________________________________%% 鲸鱼优化算法             %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader Leader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iter    for i=1:size(Positions,1)                % Return back the search agents that go beyond the boundaries of the search space        Flag4ub=Positions(i,:)>ub;        Flag4lb=Positions(i,:)<lb;        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                % Calculate objective function for each search agent        fitness=fobj(Positions(i,:));                % Update the leader        if fitness<Leader_score % Change this to > for maximization problem            Leader_score=fitness; % Update alpha            Leader_pos=Positions(i,:);        end            end        a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)        % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)    a2=-1+t*((-1)/Max_iter);        % Update the Position of search agents     for i=1:size(Positions,1)        r1=rand(); % r1 is a random number in [0,1]        r2=rand(); % r2 is a random number in [0,1]                A=2*a*r1-a;  % Eq. (2.3) in the paper        C=2*r2;      % Eq. (2.4) in the paper                        b=1;               %  parameters in Eq. (2.5)        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)                p = rand();        % p in Eq. (2.6)                for j=1:size(Positions,2)                        if p<0.5                   if abs(A)>=1                    rand_leader_index = floor(SearchAgents_no*rand()+1);                    X_rand = Positions(rand_leader_index, :);                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)                                    elseif abs(A)<1                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)                end                            elseif p>=0.5                              distance2Leader=abs(Leader_pos(j)-Positions(i,j));                % Eq. (2.5)                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);                            end                    end    end    t=t+1;    Convergence_curve(t)=Leader_score;end

⛳️ 运行结果

🔗 参考文献


🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
6天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
6天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
12天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
15天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
31 8
|
14天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。