✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
近年来,优化算法在解决各种单目标优化问题中发挥着重要作用。其中,鲸鱼优化算法 (GWO) 是一种受到自然界鲸鱼群体行为启发的优化算法,已经在多个领域取得了显著的成果。然而,传统的GWO算法在处理复杂问题时存在一些局限性。为了克服这些限制,研究者们提出了一种基于自适应变螺旋最近领域扰动的鲸鱼优化算法 (GWOA)。
GWOA算法的核心思想是通过引入自适应变螺旋最近领域扰动机制,增加搜索空间的多样性和局部搜索能力。该算法的基本步骤如下:
- 初始化种群:随机生成一定数量的鲸鱼个体,并为每个个体分配初始位置和速度。
- 计算适应度值:根据问题的目标函数,计算每个个体的适应度值。
- 更新最优解:根据适应度值,更新全局最优解和个体最优解。
- 更新位置和速度:根据自适应变螺旋最近领域扰动机制,更新每个个体的位置和速度。
- 判断停止条件:根据预设的停止条件,判断是否终止算法。
- 返回最优解:输出找到的最优解。
GWOA算法的关键创新点在于自适应变螺旋最近领域扰动机制。这一机制通过引入随机扰动和自适应变螺旋搜索策略,提高了算法的全局搜索能力和局部搜索能力。在每次迭代中,个体根据自身适应度值和邻域信息进行位置和速度的更新,从而使得算法能够更好地探索问题的搜索空间。
与传统的GWO算法相比,GWOA算法在求解单目标优化问题时具有更高的收敛速度和更好的解的质量。其自适应变螺旋最近领域扰动机制能够有效地避免算法陷入局部最优解,并且具有较好的全局搜索能力。因此,GWOA算法在实际应用中具有广泛的潜力。
总之,基于自适应变螺旋最近领域扰动的鲸鱼优化算法 (GWOA) 是一种有效的求解单目标优化问题的优化算法。通过引入自适应变螺旋最近领域扰动机制,该算法能够提高搜索空间的多样性和局部搜索能力,从而在复杂问题中取得更好的解。未来,我们可以进一步研究和改进GWOA算法,以应用于更多实际问题的求解中。
📣 部分代码
%_________________________________________________________________________%% 鲸鱼优化算法 %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader Leader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iter for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)<lb; Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); % Update the leader if fitness<Leader_score % Change this to > for maximization problem Leader_score=fitness; % Update alpha Leader_pos=Positions(i,:); end end a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) a2=-1+t*((-1)/Max_iter); % Update the Position of search agents for i=1:size(Positions,1) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A=2*a*r1-a; % Eq. (2.3) in the paper C=2*r2; % Eq. (2.4) in the paper b=1; % parameters in Eq. (2.5) l=(a2-1)*rand+1; % parameters in Eq. (2.5) p = rand(); % p in Eq. (2.6) for j=1:size(Positions,2) if p<0.5 if abs(A)>=1 rand_leader_index = floor(SearchAgents_no*rand()+1); X_rand = Positions(rand_leader_index, :); D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8) elseif abs(A)<1 D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1) Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2) end elseif p>=0.5 distance2Leader=abs(Leader_pos(j)-Positions(i,j)); % Eq. (2.5) Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j); end end end t=t+1; Convergence_curve(t)=Leader_score;end
⛳️ 运行结果