Python实战项目——O2O_优惠券使用情况分析(五)

简介: Python实战项目——O2O_优惠券使用情况分析(五)

O2O优惠券线下使用情况数据分析

一 项目简介

随着移动设备的完善和普及,移动互联网+各行各业进入了高速发展阶段,这其中以O2O(Online to Offline)消费最为吸引眼球。据不完全统计,O2O行业估值上亿的创业公司至少有10家,也不乏百亿巨头的身影。O2O行业关联数亿消费者,各类APP每天记录了超过百亿条用户行为和位置记录,因而成为大数据科研和商业化运营的最佳结合点之一。 以优惠券盘活老用户或吸引新客户进店消费是O2O的一种重要营销方式。然而随机投放的优惠券对多数用户造成无意义的干扰。对商家而言,滥发的优惠券可能降低品牌声誉,同时难以估算营销成本。个性化投放是提高优惠券核销率的重要技术,它可以让具有一定偏好的消费者得到真正的实惠,同时赋予商家更强的营销能力。

二 分析目标

  1. 分析店面客流量是否火爆的影响因素
  2. 分析顾客的消费习惯
  3. 分析投放的优惠券的使用情况

三 数据来源

本数据提供用户在2016年1月1日至2016年6月30日之间真实线上线下消费行为。

四 数据分析

本次分析仅使用线下交易数据

1 字段表:

线下消费情况表(ccf_offline_stage1_train.csv):

Field Description
User_id 用户ID
Merchant_id 商户ID
Coupon_id 优惠券ID:null表示无优惠券消费,
此时Discount_rate和Date_received字段无意义
Discount_rate 优惠率:x\in[0,1]代表折扣率;x:y表示满x减y。单位元
Distance User经常活动的地点离该merchant的最近距离
是x*500米,x\in[0,10];null表示无此信息,
0表示低于500米,10表示大于5公里;
Date_received 领取优惠券日期
Date 消费日期;如果Date=null&Coupon_id != null,
该记录表示领取优惠券但没有使用,即负样本;

如果Date != null&Coupon_id=null,则表示普通

消费日期;如果Date != null&Coupon_id != null,

则表示用优惠券消费日期,即正样本;

加载库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns  #绘图模块,基于matplotlib的可视化python包,不能完全替代matplotlib,只是对matplotlib进行升级
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
%matplotlib inline
#pip install seaborn
im

1.加载数据

#parse_dates:将指定的列加载成日期的格式

offline = pd.read_csv('ccf_offline_stage1_train.csv',parse_dates=['Date_received','Date'])
offline.info()  #175+万条数据

offline.head(10)  
• 1

NaT:时间日期格式的空值

2.数据的规整

判断每一列当中有多少个空值

offline.isnull().sum()

优惠券id,折扣率,领券日期,三者可能存在同时==null的情况

2.1把“Discount_rate”列中的满减政策转换成折扣率

offline['Discount_rate'] = offline['Discount_rate'].fillna('null')
offline.head()

def discount_rate_opt(s): #s代表每一个元素
    if ':' in s:
        split = s.split(':')
        discount_rate = (int(split[0]) - int(split[1]))/int(split[0])
        return round(discount_rate,2)  #折扣率保留两位小数
    elif s == 'null':
        return np.NaN
    else:
        return float(s)

offline['Discount_rate']  = offline['Discount_rate'].map(discount_rate_opt)offline.head()

意义

检查Coupon_id和Discount_rate与Date_received判断空值和非空值是否一一对应。

np.all():判断一个课迭代数据中是否都为True,如果是返回True,否则返回False

np.all([True,False,True])

2.3

如果Date=null & Coupon_id!=null,有券未消费(cpon_no_consume) 如果Date=null & Coupon_id =null,无券未消费(no_cpon_no_consume) 如果Date!=null & Coupon_id=null,无券消费(no_cpon_consume) 如果Date!=null & Coupon_id!=null,有券消费(cpon_consume)

cpon_no_consume = offline[(offline['Date'].isnull() & offline['Coupon_id'].notnull())]
no_cpon_no_consume = offline[(offline['Date'].isnull() & offline['Coupon_id'].isnull())]
no_cpon_consume = offline[(offline['Date'].notnull() & offline['Coupon_id'].isnull())]
cpon_consume = offline[(offline['Date'].notnull() & offline['Coupon_id'].notnull())]
print('有券未消费:{}'.format(len(cpon_no_consume)))
print('无券未消费:{}'.format(len(no_cpon_no_consume)))  #无意义,不需分析
print('无券消费:{}'.format(len(no_cpon_consume)))
print('有券消费:{}'.format(len(cpon_consume)))

用优惠券消费的用7万,相比其他用户来说,占比较少

3.数据分析

#绘制饼图占比
consume_status_dict = {'cpon_no_consume':len(cpon_no_consume),'no_cpon_consume':len(no_cpon_consume),'cpon_consume':len(cpon_consume)}
consume_status = pd.Series(consume_status_dict)
consume_status

#消费方式构成的饼图(figure:看作是一张画布,axes:代表画布内的多个坐标系)
fig,ax=plt.subplots(1,1,figsize=(8,10))
consume_status.plot.pie(ax = ax,
                       autopct='%1.1f%%',
                       shadow=True,
                        explode=[0.02,0.05,0.2],
                        textprops={'fontsize':15,'color':'blue'},
                        wedgeprops={'linewidth':1,'edgecolor':'black'},
                        labels=['有券未消费 \n ({})'.format(len(cpon_no_consume)),
                                '无券消费 \n ({})'.format(len(no_cpon_consume)),
                               '用券消费 \n ({})'.format(len(cpon_consume))
                               ]
                       )
ax.set_ylabel('')  #去除ylable
ax.set_title('消费占比情况')
plt.legend(labels=['有券未消费','无券消费','用券消费'])

  • 有券未消费占比55.7%最大,说明大多数人拿完券之后,尚未使用
  • 无圈消费用户占比40%,说明很多人没有使用优惠券,可能优惠券的吸引力不大,客户没在意;可能,新用户比较多。
  • 用券消费用户占比较小4.3%,说明我们的优惠券使用率不高。可以考虑是不是加大优惠券力度…

3.1在有券消费人群中,分析距离和优惠折扣

各商家对应的顾客到店平均距离

Merchant_distance = cpon_consume.groupby('Merchant_id')['Distance'].mean()
Merchant_distance[Merchant_distance==0]

有4076个商家,有1431个商家的用券消费用户平均范围在500米以内

各商家对应的顾客到店消费平均折扣力度

Merchant_discount_rate = cpon_consume.groupby('Merchant_id')['Discount_rate'].mean()
Merchant_discount_rate.sort_values()
Merchant_discount_rate.hist()
Merchant_discount_rate.mean()  #所有商家平均折扣的平均值:0.88
Merchant_discount_rate

3.2持券到店消费人数最多的商家

对商家进行分组,取出用户id,对用户id进行去重统计数量

popular_merchant = cpon_consume.groupby('Merchant_id')['User_id'].apply(lambda x:len(x.unique())).sort_values(ascending=False)
#找出持券消费人数>500的商家id
popular_merchant500 = popular_merchant[popular_merchant>500]
popular_merchant500.name = 'customer_count'  #指定列名为消费者数量(持券消费者)
print(len(popular_merchant500))
print(popular_merchant500)

  • 共有16家店铺,持券消费人数在500人以上
  • 持券消费人数最多商家是5341,持券消费人数在2800
  • 排名最后的商家,持券消费人数未559人
  • 这批商家对优惠券的使用方法得当,消费者喜欢用优惠券进行消费,可以适当借鉴这批商家的推广力度

3.3持券消费人数在500人以上的商家,连接顾客到店平均距离和平均折扣力度

merchant_pop_dis = pd.merge(left=popular_merchant500,right=Merchant_distance,on='Merchant_id',how='inner')
merchant_pop_dis_rate = pd.merge(left=merchant_pop_dis,right=Merchant_discount_rate,on='Merchant_id',how='inner')
merchant_pop_dis_rate

3.4计算到店消费人数与平均距离和折扣力度的相关系数

  • corr(correlation:相关系数),用来计算df数据中列与列的相关性(皮尔逊相关系数),取值范围[-1,1]之间
  • 1:完全正相关,-1:完全负相关
  • 绝对值越大:相关性越大,反之成立
  • 正相关:随着变量的增大,而增大,反之同理
  • 负相关:随着变量的增大,而减小,反之同理
merchant_pop_dis_rate.corr()

持券消费人数,与距离和折扣率都呈现出负相关,属于生活中的正常现象

用热力图展示相关系数(data:相关系数,annot:显示相关系数值,cmap:颜色范围,vmax:最大值,vmin:最小值)

sns.heatmap(data=merchant_pop_dis_rate.corr(),annot=True,cmap='Accent',vmax=1,vmin=-1)

由图可知:

  1. 到店消费人数的多少与顾客到店铺的距离之间呈现负相关,相关系数0.31,在0.3~0.5之间,为低度相关
  2. 到店消费人数的多少与优惠打折力度呈现负相关,相关系数0.2,在0~0.3之间,为相关程度极弱
    综上所述,这些店家之所以火爆,应该是物美价廉导致,与距离和优惠力度相关性不大

4.1分析每天中优惠券的总体发放量与使用量情况

  • 业务分析:日期(优惠券的发放日期Date_received,使用日期date)用作图表的x轴
  • 需要统计每天优惠券发放数量和使用数量

    每天优惠券的使用量(即持券消费人群)
consume_num_everday =  cpon_consume[['User_id','Date_received']]
consume_num_everday = consume_num_everday.groupby('Date_received').count()
consume_num_everday = consume_num_everday.rename(columns={'User_id':'count'})
consume_num_everday

每天发放的优惠券数量(取出所有领券日期!=null的数据,在进行按天分组,计数就可以)

coupon_sendout_everyday = offline[offline['Date_received'].notnull()][['Date_received','User_id']]
coupon_sendout_everyday = coupon_sendout_everyday.groupby('Date_received').count()
coupon_sendout_everyday = coupon_sendout_everyday.rename(columns={'User_id':'count'})
coupon_sendout_everyday

绘制每天发券量和每天用券量

plt.figure(figsize=(18,6))
# plt.bar(x=date_receive_sort,height=coupon_sendout_everyday['count'],label='每天发券量')
plt.bar(x=date_sort,height=consume_num_everday['count'],label='每天用券量')
plt.yscale('log')  #对y轴进行对数缩放
plt.legend()

16年2月为例,用券量级别再1000,发券量再10万左右,在100倍左右,优惠券的使用率还是非常低的

计算每天的优惠券与发券量占比

plt.figure(figsize=(18,6))
plt.bar(x=date_receive_sort,height=consume_num_everday['count']/coupon_sendout_everyday['count'],
       label='百分比')
plt.legend()

  • 由图可知,优惠券使用率最高在16年3月底,达到了30%
  • 使用率最低在16年1月底,最低为3%左右。
  • 整体来看,优惠券使用率波动较大。

五 结论

  1. 顾客光顾最多的比较火爆的店面,并不受距离和打折力度影响,应该是商品品质或消费体验等水平较高所致
  2. 各店家发放的优惠券,被使用总数和发放总数的比例不到一成,所以随机发放优惠券的效果并不理想,有很大的优化空间
  3. 个性化投放是提高优惠券核销率的重要技术,它可以让具有一定偏好的消费者得到真正的实惠,通过分析发现,属于’shopping_mania’这个集合的1万4千多名消费者对于优惠券比较依赖,可以成为个性化发放的重点对象
  4. 更进一步有针对性的个性化投放可以通过机器学习建模来拟合顾客的消费习惯,从而更精确的挖掘优惠券的适用对象
相关文章
|
2天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
【7月更文挑战第13天】在Web开发中,AJAX和Fetch API是实现页面无刷新数据交换的关键。在Flask博客系统中,通过创建获取评论的GET路由,我们可以展示使用AJAX和Fetch API的前端实现。AJAX通过XMLHttpRequest发送请求,处理响应并在成功时更新DOM。Fetch API则使用Promise简化异步操作,代码更现代。这两个工具都能实现不刷新页面查看评论,Fetch API的语法更简洁,错误处理更直观。掌握这些技巧能提升Python Web项目的用户体验和开发效率。
15 7
|
2天前
|
算法 数据挖掘 数据处理
搜索新境界:Python二分查找变种实战,精准定位数据不是梦!
【7月更文挑战第13天】二分查找算法以O(log n)效率在有序数组中查找数据。基础算法通过不断分割数组对比中间元素。Python实现变种包括:1) 查找目标值的第一个出现位置,找到后向左搜索;2) 查找目标值的最后一个出现位置,找到后向右搜索。这些变种在数据分析和索引构建等场景中极具价值,提升处理效率。
|
4天前
|
存储 算法 Python
Python图论实战:从零基础到精通DFS与BFS遍历,轻松玩转复杂网络结构
【7月更文挑战第11天】图论在数据科学中扮演关键角色,用于解决复杂网络问题。Python因其易用性和库支持成为实现图算法的首选。本文通过问答形式介绍DFS和BFS,图是节点和边的数据结构,遍历用于搜索和分析。Python中图可表示为邻接表,DFS用递归遍历,BFS借助队列。DFS适用于深度探索,BFS则用于最短路径。提供的代码示例帮助理解如何在Python中应用这两种遍历算法。开始探索图论,解锁更多技术可能!
20 6
爆赞!GitHub首本Python开发实战背记手册,标星果然百万名不虚传
Python (发音:[ 'paiθ(ə) n; (US) 'paiθɔn ] n. 蟒蛇,巨蛇 ),是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python 语言的特点:
|
4天前
|
算法 搜索推荐 编译器
算法高手养成记:Python快速排序的深度优化与实战案例分析
【7月更文挑战第11天】快速排序是编程基础,以O(n log n)时间复杂度和原址排序著称。其核心是“分而治之”,通过选择基准元素分割数组并递归排序两部分。优化包括:选择中位数作基准、尾递归优化、小数组用简单排序。以下是一个考虑优化的Python实现片段,展示了随机基准选择。通过实践和优化,能提升算法技能。**
8 3
|
3天前
|
Python
告别阻塞,拥抱未来!Python 异步编程 asyncio 库实战指南!
【7月更文挑战第12天】Python的`asyncio`库是异步编程的关键,它允许程序在等待IO操作时执行其他任务,提升效率。异步函数用`async def`定义,`await`用于挂起执行。
15 1
|
1天前
|
存储 搜索推荐 算法
`surprise`是一个用于构建和分析推荐系统的Python库。
`surprise`是一个用于构建和分析推荐系统的Python库。
10 0
|
1天前
|
数据可视化 Python
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
7 0
|
自然语言处理 算法 Python
|
自然语言处理 算法 索引