132.【MySQL_进阶】(十)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 132.【MySQL_进阶】

(九)、InnoDB 引擎

1.InnoDB_逻辑存储结构 ⭐

表空间-> 段 -> 区 -> 页 ->行

(1).逻辑存储结构_表空间 (TableSpace)

表空间(ibd文件),一个mysql实列可以对应多个表空间,用于存储记录索引等数据。

(2).逻辑存储结构_段(Segment)

段,分为数据段(Left node segment)索引段(Non-leaf node segment)回滚段(Rollback segment)、InnoDB是索引组织表,数据段就是B+树的叶子节点,索引段即为B+树的非叶子节点。段用来管理多个Extent(区)。

(3).逻辑存储结构_区 (Extent)

区,表空间的单元结构,每一个区大小为1MB.默认情况下,InnoDB存储引擎页大小为16K.即一个区中共有64个连续的页

(4).逻辑存储结构_页(Page)

页,是InnoDB存储引擎磁盘管理的最小单元,每个页的大小默认为16K.为了保证页的连续性,InnoDB存储引擎每次从磁盘申请4-5个区。

(5).逻辑存储结构_行

行,InnoDB存储引擎数据是按行进行存放的。

  1. Trx_id: 每次对某条记录进行改动时,都会把对应的事务id复制给Trx_id隐藏列。
  2. Roll_pointer: 每次对某条引记录进行改动时,都会把旧的版本写入到undo日志中,然后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

2.InnoDB_架构_内存结构 ⭐

(1).InnoDB_内存结构介绍

MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。

下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。

(2). InnoDB_内存结构 Buffer Pool (缓冲池)

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时, 先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存), 然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

  1. free page:空闲page,未被使用。
  2. clean page:被使用page,数据没有被修改过。
  3. dirty page:脏页,被使用page,数据被修改过,也中数据与磁盘的数据产生了不一致。
(3).InnoDB_内存结构 Change Buffer (更改缓冲区)

Change Buffer 更改缓冲区针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO。有了ChangeBuffer之后,我们可以在缓冲池中进行合并处理,减少磁盘IO

(4).InnoDB_内存结构 Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成。

参数: innodb_adaptive_hash_index

show variables like '%hash_index%';

(5).InnoDB_内存结构 Log Buffer (日志缓冲区)

Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log),默认大小为16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘I/O。

参数:

  1. innodb_log_buffer_size:缓冲区大小
  2. innodb_flush_log_at_trx_commit:日志刷新到磁盘时机。取值主要包含以下三个:
  • 1: 日志在每次事务提交时写入并刷新到磁盘,默认值。
  • 0: 每秒将日志写入并刷新到磁盘一次。
  • 2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。

3.InnoDB_架构_磁盘结构

(1).磁盘结构_System Tablespace (系统表空间)

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)

参数:innodb_data_file_path

show variables like 'innodb_data_file_path';

(2).磁盘结构_File-Per-Table Tablespaces (独立表空间)

如果开启了innodb_file_per_table开关,则每个表的文件表空间包含单个InnoDB表的数据和索引,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table ,该参数默认开启。

show variables like 'innodb_file_per_table';

如果开启的就代表: 没一张表都会生成一个表空间文件(ibd);

(3).磁盘结构_General Tablespaces (通用表空间)

通用表空间,需要通过CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

  1. 创建表空间
CREATE TABLESPACEt '创建的表空间名'  ADD DATAFILE '文件名' ENGINE=引擎名;
  1. 创建表时指定表空间
create table 创建表语句() tablespace 指定的表空间名;
(4).磁盘结构_Undo Tablespaces (撤销表)

撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储undo log日志。

(5).磁盘结构_Temporary Tablespaces (临时表空间)

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

(6).磁盘结构_Doublewrite Buffer Files (双写缓冲区)

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

(7).磁盘结构_Redo Log(重做日志)

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo logbuffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

4.InnoDB_架构_后台线程

后台线程的作用就是将缓冲区的文件加载到磁盘文件中。

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、Page Cleaner Thread。

(1).后台线程_ Master Thread (主线程)

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收。

(2).后台线程_IO Thread (IO线程)

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调

线程类型 默认个数 职责
Read thread 4 负责读操作
Write thread 4 负责写操作
Log thread 1 负责将日志缓冲区刷新到磁盘
Insert buffer thread 1 负责将写缓冲区内容刷新到磁盘

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息。

show engine innodb status;

(3).后台线程_Purge Thread (回收线程)

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

(4).后台线程_Page Cleaner Thread (清理页线程)

协助Master Thread 刷新脏页到磁盘的线程,它可以减轻Master Thread 的工作压力,减少阻塞。

5.InnoDB_事务 ⭐

(1).事务原理_概述

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

  1. 原子性: 事务不能在分割,要么全部成功幺二秒全部失败。
  2. 一致性: 事务开启前后,数据要保持一致性。
  3. 隔离性: 不同事务之间相互隔离,互不影响。
  4. 持久性: 事务一旦提交或回滚,他对数据库的改变是永久的。

6.InnoDB_事务_Redo log (解决持久性)

(1).redo log 介绍

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久型。

该日志文件由两部分组成: 重做日志缓冲 (read log buffer)以及重做日志文件 (redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中,用于刷新胀页的磁盘,发生错误时,进行数据恢复使用。

(2).没有redo log 的时候

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。而脏页则会在一定的时机,通过后台线程刷新到磁盘中,从而保证缓冲区与磁盘的数据一致。而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

(3).有redo log 的时候

那么,如何解决上述的问题呢?在InnoDB中提供了一份日志redo log,接下来我们再来分析一下,通过redolog如何解决这个问题。

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据恢复,这样就保证了事务的持久性。而如果脏页成功刷新到磁盘或或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。而redo log在往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。这种先写日志的方式,称之为WAL(Write-Ahead Logging)。

7.InnoDB_事务_Undo log (解决原子性)

(1).undo log 介绍

回滚日志,用于记录数据被修改前的信息, 作用包含两个: 提供回滚(保证事务的原子性) 和MVCC(多版本并发控制) 。

undo log和redo log(物理日志)不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录(旧数据),反之亦然,当update一条记录时,它记录一条对应相反的update记录(旧数据)。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

  1. Undo log销毁:undolog在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。
  2. Undo log存储:undolog采用段的方式进行管理和记录,存放在前面介绍的rollback segment 回滚段中,内部包含1024个undo log segment。

8.InnoDB_MVVC ⭐

(1).当前读 (读取最新)

读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录加锁。对于我们日常的操作,如: select … lock in share mode (共享锁); select … for updare、insert、delete (排他锁)都是一种当前读。

1. 验证读取最新之: 使用当前读

可以读取另一个事务已提交的数据。

(2).快照读 (读历史数据)

简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

  • Read Committed:每次select,都生成一个快照读。
  • Repeatable Read:开启事务后第一个select语句才是快照读的地方。
  • Serializable:快照读会退化为当前读

1.验证快照读,读的是历史数据

可以读取已提交的历史数据。

(3).MVCC (多版本并发控制)

全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

9.InnoDB_MVVC_隐藏字段

(1).记录中的隐藏字段

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

隐藏字段 含义
DB_TRX_ID 最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTP 回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版本。
DB_ROW_ID 隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。
(2).查看记录中的隐藏字段。

查看数据库中 tb_user表的全部信息包括隐藏字段 MySQL8.0+

idb2sdi tb_user.idb
• 1

查看到的表结构信息中,有一栏 columns,在其中我们会看到处理我们建表时指定的字段以外,还有额外的两个字段 分别是:DB_TRX_IDDB_ROLL_PTR ,因为该表有主键,所以没有DB_ROW_ID隐藏字段,如果表中没有主键那么就会显示。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6月前
|
存储 SQL 关系型数据库
MySQL语句详解:从基础到进阶的全面指南
MySQL语句详解:从基础到进阶的全面指南
|
7月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第三篇(MySQL性能优化)
MySQL数据库进阶第三篇(MySQL性能优化)
|
7月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
|
7月前
|
SQL 关系型数据库 MySQL
MySQL数据库进阶第五篇(锁)
MySQL数据库进阶第五篇(锁)
|
7月前
|
存储 SQL 关系型数据库
MySQL 进阶使用【函数、索引、视图、存储过程、存储函数、触发器】(2)
MySQL 进阶使用【函数、索引、视图、存储过程、存储函数、触发器】
|
7月前
|
存储 SQL 关系型数据库
MySQL 进阶使用【函数、索引、视图、存储过程、存储函数、触发器】(1)
MySQL 进阶使用【函数、索引、视图、存储过程、存储函数、触发器】
|
6月前
|
存储 关系型数据库 MySQL
MySQL数据库开发进阶:精通数据库表的创建与管理22
【7月更文挑战第22天】数据库的创建与删除,数据表的创建与管理
57 1
|
7月前
|
JSON 关系型数据库 MySQL
MySQL常用函数解读:从基础到进阶的全方位指南
MySQL常用函数解读:从基础到进阶的全方位指南
|
7月前
|
SQL 关系型数据库 MySQL
Python进阶第二篇(Python与MySQL数据库)
Python进阶第二篇(Python与MySQL数据库)
|
7月前
|
存储 SQL 关系型数据库
MySQL数据库进阶第四篇(视图/存储过程/触发器)
MySQL数据库进阶第四篇(视图/存储过程/触发器)
下一篇
开通oss服务