大数据Spark DataFrame/DataSet常用操作1

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据Spark DataFrame/DataSet常用操作1

1 一般操作:查找和过滤

1.1 读取数据源

1.1.1读取json

使用spark.read。注意:路径默认是从HDFS,如果要读取本机文件,需要加前缀file://,如下

scala> val people = spark.read.format("json").load("file:///opt/software/data/people.json")
people: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> people.show
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+

spark.read.format(“json”).load(“file:///opt/software/data/people.json”)

等价于spark.read.json(“file:///opt/software/data/people.json”)

如要要读取其它格式文件,只需修改format(“json”)即可,如format(“parquet”)

1.1.2 读取Hive表

使用spark.sql。其中hive数据库名default(默认数据库名可省略),表为people

scala> val peopleDF=spark.sql("select * from default.people")
peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: int ... 1 more field]
scala> peopleDF.show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|  wangwu| 33| beijing|
|    lisi| 28|shanghai|
+--------+---+--------+
scala> peopleDF.printSchema
root
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- address: string (nullable = true)

1.2 取数据列

取列的三种方式如下

scala> peopleDF.select("name","age").show
+--------+---+
|    name|age|
+--------+---+
|zhangsan| 22|
|  wangwu| 33|
|    lisi| 28|
+--------+---+
scala> peopleDF.select($"name",$"age").show
+--------+---+
|    name|age|
+--------+---+
|zhangsan| 22|
|  wangwu| 33|
|    lisi| 28|
+--------+---+
scala> peopleDF.select(peopleDF.col("name"),peopleDF.col("age")).show
+--------+---+
|    name|age|
+--------+---+
|zhangsan| 22|
|  wangwu| 33|
|    lisi| 28|
+--------+---+

注意:如果在IDEA中编辑代码,使用, 则 必 须 增 加 语 句 : i m p o r t s p a r k . i m p l i c i t s . , 否 则 ,则必须增加语句:import spark.implicits._,否则,则必须增加语句:importspark.implicits.

否则表达式会报错。spark-shell默认已经导入了的

$”列名”这个是语法糖,返回Column对象

1.3 过滤算子filter(filter等价于where算子)

DF.col("id")等价于$"id",取列ColumnName

DF.filter("name=''") 过滤name等于空的行

DF.filter($"age" > 21).show() 过滤age大于21的行,必须增加语句:import spark.implicits._,否则$表达式会报错

DF.filter($"age" === 21) 取等于时必须用===,否则报错,对应的不等于是=!=。等价于DF.filter("age=21")

DF.filter("substring(name,0,1) = 'M'").show 显示name以M开头的行,其中substring是functions.scala,functions.scala包含很多函数方法,等价于DF.filter("substr(name,0,1) = 'M'").show

scala> peopleDF.printSchema
root
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- address: string (nullable = true)
scala> peopleDF.show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|  wangwu| 33| beijing|
|    lisi| 28|shanghai|
+--------+---+--------+
scala> peopleDF.filter($"name" === "wangwu").show
+------+---+-------+
|  name|age|address|
+------+---+-------+
|wangwu| 33|beijing|
+------+---+-------+
scala> peopleDF.filter($"name" =!= "wangwu").show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|    lisi| 28|shanghai|
+--------+---+--------+
scala> peopleDF.filter("age > 30").show
+------+---+-------+
|  name|age|address|
+------+---+-------+
|wangwu| 33|beijing|
+------+---+-------+
scala> peopleDF.filter($"age" > 30).show
+------+---+-------+
|  name|age|address|
+------+---+-------+
|wangwu| 33|beijing|
+------+---+-------+

2 聚合操作:groupBy和agg

2.1 排序算子sort(sort等价于orderBy)

DF.sort(DF.col(“id”).desc).show 以DF中字段id降序,指定升降序的方法。另外可指定多个字段排序

=DF.sort($“id”.desc).show

DF.sort 等价于DF.orderBy

scala> peopleDF.sort($"age").show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|    lisi| 28|shanghai|
|  wangwu| 33| beijing|
+--------+---+--------+
scala> peopleDF.sort($"age".desc).show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|  wangwu| 33| beijing|
|    lisi| 28|shanghai|
|zhangsan| 22| chengdu|
+--------+---+--------+
scala> peopleDF.sort($"age".asc).show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|    lisi| 28|shanghai|
|  wangwu| 33| beijing|
+--------+---+--------+
scala> peopleDF.orderBy($"age".asc).show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|    lisi| 28|shanghai|
|  wangwu| 33| beijing|
+--------+---+--------+
scala> peopleDF.orderBy($"age".desc).show
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|  wangwu| 33| beijing|
|    lisi| 28|shanghai|
|zhangsan| 22| chengdu|
+--------+---+--------+

2.2 分组函数groupBy

2.2.1 分组计数

select address,count(1) from people group by address; 等价的算子如下

scala> peopleDF.show()
+--------+---+--------+
|    name|age| address|
+--------+---+--------+
|zhangsan| 22| chengdu|
|  wangwu| 33| beijing|
|    lisi| 28|shanghai|
|xiaoming| 28| beijing|
|      mm| 21| chengdu|
|xiaoming| 18| beijing|
|      mm| 11| chengdu|
+--------+---+--------+
scala> peopleDF.groupBy("address").count().show
+--------+-----+
| address|count|
+--------+-----+
| beijing|    3|
| chengdu|    3|
|shanghai|    1|
+--------+-----+

2.2.2 分组后求最值、平均值、求和的方法

//等价于select address,max(age) from people group by address;
scala> peopleDF.groupBy("address").max("age").show
+--------+--------+
| address|max(age)|
+--------+--------+
| beijing|      33|
| chengdu|      22|
|shanghai|      28|
+--------+--------+
//等价于select address,avg(age) from people group by address;
scala> peopleDF.groupBy("address").avg("age").show
+--------+------------------+
| address|          avg(age)|
+--------+------------------+
| beijing|26.333333333333332|
| chengdu|              18.0|
|shanghai|              28.0|
+--------+------------------+
//等价于select address,min(age) from people group by address;
scala> peopleDF.groupBy("address").min("age").show
+--------+--------+
| address|min(age)|
+--------+--------+
| beijing|      18|
| chengdu|      11|
|shanghai|      28|
+--------+--------+
//等价于select address,sum(age) from people group by address;
scala> peopleDF.groupBy("address").sum("age").show
+--------+--------+
| address|sum(age)|
+--------+--------+
| beijing|      79|
| chengdu|      54|
|shanghai|      28|
+--------+--------+

2.2.3 分组后,求多个聚合值(最值、平均值等)。使用算子groupBy+agg

//等价于select address,count(age),max(age),min(age),avg(age),sum(age) from people group by address;
scala> peopleDF.groupBy("address").agg(count("age"),max("age"),min("age"),avg("age"),sum("age")).show
+--------+----------+--------+--------+------------------+--------+
| address|count(age)|max(age)|min(age)|          avg(age)|sum(age)|
+--------+----------+--------+--------+------------------+--------+
| beijing|         3|      33|      18|26.333333333333332|      79|
| chengdu|         3|      22|      11|              18.0|      54|
|shanghai|         1|      28|      28|              28.0|      28|
+--------+----------+--------+--------+------------------+--------+

2.2.4 分组聚合后取别名

scala> peopleDF.groupBy("address").agg(count("age").as("cnt"),avg("age").as("avg")).show
+--------+---+------------------+
| address|cnt|               avg|
+--------+---+------------------+
| beijing|  3|26.333333333333332|
| chengdu|  3|              18.0|
|shanghai|  1|              28.0|
+--------+---+------------------+

2.2.5 分组后行转列,使用pivot

//求同名用户在同一个地址的平均年龄
//把name的不同值作为列名
scala> peopleDF.groupBy("address").pivot("name").avg("age").show
+--------+----+----+------+--------+--------+
| address|lisi|  mm|wangwu|xiaoming|zhangsan|
+--------+----+----+------+--------+--------+
| beijing|null|null|  33.0|    23.0|    null|
| chengdu|null|16.0|  null|    null|    22.0|
|shanghai|28.0|null|  null|    null|    null|
+--------+----+----+------+--------+--------+

2.3 案例


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
207 0
|
7月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
292 79
|
11月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
704 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
451 2
|
11月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
400 1
|
12月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
195 0
|
12月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
171 0
|
12月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
219 0
|
11月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
475 6