Java由浅入深理解线程池设计和原理1

简介: Java由浅入深理解线程池设计和原理1

1 线程

1.1 什么是线程?什么是进程?

进程:是指在系统中正在运行的一个应用程序,每个进程之间是独立的,每个进程均运行在其专用的且受保护的内存

线程:进程的基本执行单元,一个进程的所有任务都在线程中执行,进程要想执行任务,必须得有线程,进程至少要有一条线程

1.2 java中线程的实现方式有几种?

继承Thread类

public class MyThread extends Thread{
    @Override
    public void run() {
        // 执行自己代码逻辑
        System.out.println("自己线程被执行");
    }
    public static void main(String[] args) {
        MyThread myThread = new MyThread();
        myThread.start();
    }
}

实现Runnable接口

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        // 执行自己代码逻辑
        System.out.println("自己Runnable被执行");
    }
    public static void main(String[] args) {
        Thread thread = new Thread(new MyRunnable());
        thread.start();
    }
}

1.3 线程的生命周期是什么?

  • NEW:刚刚创建,没做任何操作
Thread thread = new Thread();
System.out.println(thread.getState());

RUNNABLE:调用run,可以执行,但不代表一定在执行(RUNNING,READY)

thread.start();
System.out.println(thread.getState());
  • BLOCKED:抢不到锁
        final byte[] lock = new byte[0];
        new Thread(new Runnable() {
            public void run() {
                synchronized (lock){
                    try {
                        Thread.sleep(3000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }).start();
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                synchronized (lock){
                }
            }
        });
        thread2.start();
        Thread.sleep(1000);
        System.out.println(thread2.getState());
  • WAITING
Thread thread2 = new Thread(new Runnable() {
    public void run() {
        LockSupport.park();
    }
});
thread2.start();
Thread.sleep(500);
System.out.println(thread2.getState());
LockSupport.unpark(thread2);
Thread.sleep(500);
System.out.println(thread2.getState());

TIMED_WAITING

Thread thread3 = new Thread(new Runnable() {
    public void run() {
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
});
thread3.start();
Thread.sleep(500);
System.out.println(thread3.getState());

TERMINATED

//等待1s后再来看
Thread.sleep(1000);
System.out.println(thread.getState());

2 线程存在的问题

2.1 一个线程只能执行一个任务

2.2 线程执行完后销毁,无法复用

public class MyThread extends Thread{
    @Override
    public void run() {
        // 执行自己代码逻辑
        System.out.println("自己线程被执行");
    }
    public static void main(String[] args) throws InterruptedException {
        MyThread myThread = new MyThread();
        myThread.start();
        // main线程休息5秒,等待myThread执行完成
        TimeUnit.SECONDS.sleep(10);
        // 执行业务代码
        System.out.println("执行其他业务代码");
        // 业务代码执行完成,需要再次执行线程
        myThread.start();
    }
}

2.3 线程过多,导致JVM宕机

3 初识线程池

简介:

在多线程编程中,任务都是一些抽象且离散的工作单元,而线程是使任务异步执行的基本机制。随着应用的扩张,线程和任务管理也变得非常复杂。为了简化这些复杂的线程管理模式,我们需要一个“管理者”来统一管理线程及任务分配,这就是线程池。

在主要大厂的编程规范中,不允许在应用中自行显式地创建线程,线程必须通过线程池提供。由于创建和销毁线程需要时间以及系统资源开销,使用线程池的好处是减少这些开销,解决资源不足的问题。

3.1 了解J.U.C

J.U.C全称:java.util.concurrent,在并发编程中很常用的实用工具类。

在并发编程中很常用的实用工具类,用于完成高并发、处理多线程的一个工具包。此包包括了几个小的、已标准化的可扩展框架,以及一些提供有用功能的类,没有这些类,这些功能会很难实现或实现起来冗长乏味

3.2 线程池解决了什么问题

  • 降低系统资源消耗,通过重用已存在的线程,降低线程创建和销毁造成的消耗;
  • 提高系统响应速度,当有任务到达时,通过复用已存在的线程,无需等待新线程的创建便能立即执行
  • 方便线程并发数的管控。因为线程若是无限制的创建,可能会导致内存占用过多而产生OOM
  • 节省CPU切换线程的时间成本(需要保持当前执行线程的现场,并恢复要执行线程的现场)。
  • 提供更强大的功能,延时定时线程池。(Timer vs ScheduledThreadPoolExecutor)

3.3 线程池引发了什么问题

  • 异步任务提交后,如果JVM宕机,已提交的任务会丢失,需要考虑确认机制。
  • 使用不合理,可能导致内存溢出问题
  • 参数过多,代码结构引入数据结构与算法,增加学习难度。

4 线程池的设计思想



5 线程池的原理

5.1 了解线程池类继承结构图

说明:

  • 最常用的是ThreadPoolExecutor
  • 调度用ScheduledThreadPoolExecutor,类似Timer和TimerTask。
  • 任务拆分合并用ForkJoinPool
  • Executors是工具类,协助你创建线程池的

5.2 线程池工作状态

线程池状态

  • RUNNING:初始化状态是RUNNING。线程池被一旦被创建,就处于RUNNING状态,并且线程池中的任务数为0。RUNNING状态下,能够接收新任务,以及对已添加的任务进行处理。
  • SHUTDOWN:不接收新任务,但能处理已添加的任务。调用线程池的shutdown()接口时,线程池由RUNNING -> SHUTDOWN。
//shutdown后不接受新任务,但是task1,仍然可以执行完成
ExecutorService poolExecutor = Executors.newFixedThreadPool(5);
poolExecutor.execute(new Runnable() {
    public void run() {
        try {
            Thread.sleep(1000);
            System.out.println("finish task 1");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
});
poolExecutor.shutdown();
poolExecutor.execute(new Runnable() {
    public void run() {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
});
System.out.println("ok");

STOP:不接收新任务,不处理已添加的任务,并且会中断正在处理的任务。调用线程池的shutdownNow()接口时,线程池由(RUNNING 或 SHUTDOWN ) -> STOP

  • 注意:容易引发不可预知的结果!运行中的任务也许还会打印,直到结束,因为调的是Thread.interrupt
//改为shutdownNow后,任务立马终止,sleep被打断,新任务无法提交,task1停止
poolExecutor.shutdownNow();
  • TIDYING:所有的任务已终止,队列中的”任务数量”为0,线程池会变为TIDYING。线程池变为TIDYING状态时,会执行钩子函数terminated(),可以通过重载terminated()函数来实现自定义行为
//自定义类,重写terminated方法
public class MyExecutorService extends ThreadPoolExecutor {
    public MyExecutorService(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
    }
    @Override
    protected void terminated() {
        super.terminated();
        System.out.println("terminated");
    }
    //调用 shutdownNow, ternimated方法被调用打印
    public static void main(String[] args) throws InterruptedException {
        MyExecutorService service = new MyExecutorService(1,2,10000,TimeUnit.SECONDS,new LinkedBlockingQueue<Runnable>(5));
        service.shutdownNow();
    }
}
  • TERMINATED:线程池处在TIDYING状态时,执行完terminated()之后,就会由 TIDYING -> TERMINATED
目录
打赏
0
0
0
0
110
分享
相关文章
|
1月前
|
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
167 60
【Java并发】【线程池】带你从0-1入门线程池
【原理】【Java并发】【synchronized】适合中学者体质的synchronized原理
本文深入解析了Java中`synchronized`关键字的底层原理,从代码块与方法修饰的区别到锁升级机制,内容详尽。通过`monitorenter`和`monitorexit`指令,阐述了`synchronized`实现原子性、有序性和可见性的原理。同时,详细分析了锁升级流程:无锁 → 偏向锁 → 轻量级锁 → 重量级锁,结合对象头`MarkWord`的变化,揭示JVM优化锁性能的策略。此外,还探讨了Monitor的内部结构及线程竞争锁的过程,并介绍了锁消除与锁粗化等优化手段。最后,结合实际案例,帮助读者全面理解`synchronized`在并发编程中的作用与细节。
47 8
【原理】【Java并发】【synchronized】适合中学者体质的synchronized原理
|
21天前
|
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是写出高端的CRUD应用。2025年,我正在沉淀自己,博客更新速度也在加快。在这里,我会分享关于Java并发编程的深入理解,尤其是volatile关键字的底层原理。 本文将带你深入了解Java内存模型(JMM),解释volatile如何通过内存屏障和缓存一致性协议确保可见性和有序性,同时探讨其局限性及优化方案。欢迎订阅专栏《在2B工作中寻求并发是否搞错了什么》,一起探索并发编程的奥秘! 关注我,点赞、收藏、评论,跟上更新节奏,让我们共同进步!
89 8
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
JVM实战—1.Java代码的运行原理
本文介绍了Java代码的运行机制、JVM类加载机制、JVM内存区域及其作用、垃圾回收机制,并汇总了一些常见问题。
JVM实战—1.Java代码的运行原理
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
69 23
|
25天前
|
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
当我们创建一个`ThreadPoolExecutor`的时候,你是否会好奇🤔,它到底发生了什么?比如:我传的拒绝策略、线程工厂是啥时候被使用的? 核心线程数是个啥?最大线程数和它又有什么关系?线程池,它是怎么调度,我们传入的线程?...不要着急,小手手点上关注、点赞、收藏。主播马上从源码的角度带你们探索神秘线程池的世界...
96 0
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
Java社招面试题:一个线程运行时发生异常会怎样?
大家好,我是小米。今天分享一个经典的 Java 面试题:线程运行时发生异常,程序会怎样处理?此问题考察 Java 线程和异常处理机制的理解。线程发生异常,默认会导致线程终止,但可以通过 try-catch 捕获并处理,避免影响其他线程。未捕获的异常可通过 Thread.UncaughtExceptionHandler 处理。线程池中的异常会被自动处理,不影响任务执行。希望这篇文章能帮助你深入理解 Java 线程异常处理机制,为面试做好准备。如果你觉得有帮助,欢迎收藏、转发!
140 14
Java 面试必问!线程构造方法和静态块的执行线程到底是谁?
大家好,我是小米。今天聊聊Java多线程面试题:线程类的构造方法和静态块是由哪个线程调用的?构造方法由创建线程实例的主线程调用,静态块在类加载时由主线程调用。理解这些细节有助于掌握Java多线程机制。下期再见! 简介: 本文通过一个常见的Java多线程面试题,详细讲解了线程类的构造方法和静态块是由哪个线程调用的。构造方法由创建线程实例的主线程调用,静态块在类加载时由主线程调用。理解这些细节对掌握Java多线程编程至关重要。
62 13
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
【JAVA】生成accessToken原理
在Java中,生成accessToken用于身份验证和授权,确保合法用户访问受保护资源。流程包括:1. 身份验证(如用户名密码、OAuth 2.0);2. 生成唯一且安全的令牌;3. 设置令牌有效期并存储;4. 客户端传递令牌,服务器验证其有效性。常见场景为OAuth 2.0协议,涉及客户端注册、用户授权、获取授权码和换取accessToken。示例代码展示了使用Apache HttpClient库模拟OAuth 2.0获取accessToken的过程。